Use this URL to cite or link to this record in EThOS: http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.718742
Title: Regulation of protein synthesis during doxorubicin-induced toxicity
Author: Harvey, Robert Francis
Awarding Body: University of Leicester
Current Institution: University of Leicester
Date of Award: 2017
Availability of Full Text:
Access from EThOS:
Full text unavailable from EThOS. Thesis embargoed until 16 Jun 2018
Access from Institution:
Abstract:
In response to DNA damage, cells decrease global rates of protein synthesis to conserve energy and selectively translate mRNAs of proteins involved in the DNA damage response. Doxorubicin is a widely used chemotherapeutic that induces double strand DNA breaks. It might be expected that doxorubicin-induced DNA damage would rapidly inhibit global protein synthesis through the phosphorylation of eIF2α, as has been observed in response to UVB-induced DNA damage. However, in MCF10A cells, a delay of 9 hours was observed between DNA damage recognition and protein synthesis inhibition. Furthermore, eIF2α phosphorylation was not observed until 12 hours, and global protein synthesis inhibition was subsequently shown to be independent of eIF2α phosphorylation status. An alternative regulator of translation initiation is the mTORC1 target protein 4E-BP1. Doxorubicin-induced mTORC1 inhibition preceded eIF2α phosphorylation and correlated with the inhibition of global protein synthesis, suggesting that the DDR signalled through mTOR to regulate protein synthesis. Experiments using p53-/- MCF10A cells suggested that doxorubicin-induced mTORC1 inhibition was mediated by p53 activity, and p53-/- cells were shown to be more sensitive to doxorubicin-induced cell death. Interestingly, doxorubicin-and catalytic-inhibition of mTORC1 activity mediated the phosphorylation of eIF2α in a signalling mechanism that may be dependent on PP6, DNA-PKcs and GCN2 or PERK. Importantly, eIF2α phosphorylation was absent in response to doxorubicin in p53-/- cells, whereas catalytic inhibition of mTORC1 activity enhanced eIF2α phosphorylation. These data suggested a mechanism where p53-mediated mTORC1 inhibition signalled to enhance the phosphorylation of eIF2α.
Supervisor: Willis, Anne ; Pritchard, Catrin Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.718742  DOI: Not available
Share: