Use this URL to cite or link to this record in EThOS: http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.716871
Title: Quantitative assessment of the biochemical composition of equine cartilage using 7T ultra-high field magnetic resonance imaging (MRI) techniques
Author: Al Mohamad, Zakriya Ali E.
Awarding Body: University of Glasgow
Current Institution: University of Glasgow
Date of Award: 2016
Availability of Full Text:
Access from EThOS:
Access from Institution:
Abstract:
Equine fetlock region disease is responsible for significant morbidity and mortality. Diagnosis of sesamoidean ligament, cartilage and subchondral bone injury has been obtained by clinical MRI. Low-field MRI provides images helpful in the investigation of MCPJ/MTPJ region pathology in horses in the clinical setting but the greater resolution of high and ultra-field MR images has the potential to aid interpretation through a better understanding of MRI anatomy. Quantitative MRI could provide a non-invasive technique to determine tissue biochemical properties associated with the early onset of articular cartilage degenerative conditions such as osteoarthritis. So far, ultra-high field MRI has not been used in equine research and practice. However, recently 3T MRI has been introduced in equine hospitals in Europe and the US. The general objectives of this project, which utilised cadaver limbs, was to improve understanding of the MRI anatomy of the equine MCPJ/MTPJ region and to evaluate the use of MRI for the non-invasive, quantitative assessment of articular cartilage from the same region. The first specific objective was to describe the appearance of the normal anatomy of the equine MCPJ/MTPJ region, especially the SDFT & DDFT and DSLs, using high field (1.5T) and ultra high field (7T) MRI and to compare the images obtained with the two systems. The second objective was to determine the accuracy and precision of articular cartilage thickness measurements using 1.5T and 7T MRI and comparing the measurements with those made from histological sections of the MCPJ/MTPJ. The third objective was to measure T1 & T2 MRI sequence relaxation times for normal horse articular cartilage pre and post gadolinium contrast (dGEMRIC) administration and to determine their correlation with GAG concentration, including a description of topographical variation. The fourth objective was to compare sodium concentration in normal equine MCPJ/MTPJ articular cartilage measured using 7T MR imaging with a dual tuned quadrature 23Na/1H coil with the biochemical properties (sodium concentration determined by flame photometry and GAG concentration). The final objective was to evaluate MR sodium imaging for the assessment of enzymatically degraded equine cartilage. The findings demonstrated that 7T MRI produces high resolution images, which enable better evaluation of the hard and soft tissues of the equine MCPJ/MTPJ region than images from lower field MR systems and which permit accurate and precise articular cartilage thickness measurements to be made. Moreover, it was found that the dGEMRIC technique appears to provide a feasible quantitative tool for evaluating the articular cartilage properties. However, the quantitative parameters determined by the dGEMRIC method cannot fully characterise the biochemical properties of the cartilage. Moreover, delayed gadolinium-enhanced (dGEMRIC) techniques are time consuming, requiring relatively long incubation and scanning times. The measurement of T2 time is a very complex method. The work described in the last chapters demonstrated that sodium MRI was significantly correlated with the biochemical properties of the equine articular cartilage. Therefore the sodium MRI technique showed promise in imaging articular cartilage and providing useful information on the biochemical properties of the cartilage.
Supervisor: Not available Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.716871  DOI: Not available
Keywords: Q Science (General) ; SF600 Veterinary Medicine
Share: