Use this URL to cite or link to this record in EThOS: http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.716606
Title: Characterization of the developing haematopoietic stem cell niche using a novel immortalization system
Author: Zhao, Yiding
Awarding Body: University of Edinburgh
Current Institution: University of Edinburgh
Date of Award: 2016
Availability of Full Text:
Access from EThOS:
Full text unavailable from EThOS. Please try the link below.
Access from Institution:
Abstract:
Embryonic haematopoiesis is a complex process under intensive research. Murine definitive Haematopoietic Stem Cells (HSCs) originates from the Aorta-Gonad-Mesonephros (AGM) region of E10.5 embryo. It is thought that definitive HSCs arise from endothelial lining of dorsal aorta. However, detail of HSC specification in the developing embryo remains elusive. One way to deciphering events occurred during HSC specification is to derive cell lines from the developing HSC niche. Previous work by Oostendorp et al. showed the AGM and fetal liver derived lines could maintain HSCs in vitro (Oostendorp, Harvey et al. 2002). In this study, I established a more robust immortalization system using normal SV40 large T antigen delivered via Neon™ electroporation system. The new immortalization system achieved direct immortalization without going through crisis. And it is compatible with small number of primary cells dissected from different haematopoietic niches. With my new system, multiple cell lines from different haematopoietic sites at different developmental points are derived. Moreover, some of these lines demonstrated ability to mature precursors from E9.5 embryo (pro-HSCs) to definitive HSC without help of growth factors. This result is better compared to OP9 stromal lines. Such data proved usefulness of using stromal cell lines to study haematopoietic specification.
Supervisor: Medvinsky, Alexander ; Kunath, Tilo Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.716606  DOI: Not available
Keywords: haematopoietic stem cells ; aggregation assays ; stroma cells ; cell line derivation
Share: