Use this URL to cite or link to this record in EThOS: http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.716587
Title: Development of novel low-oxidation state main group catalysis : gallium & aluminium
Author: Qin, Bo
Awarding Body: University of Edinburgh
Current Institution: University of Edinburgh
Date of Award: 2016
Availability of Full Text:
Access from EThOS:
Full text unavailable from EThOS. Please try the link below.
Access from Institution:
Abstract:
This PhD thesis is focused on the development of novel catalysis with low-oxidation main group species, mainly based on the group 13 element gallium, a relatively abundant, inexpensive, and low-toxic metal. Gallium in its stable high-oxidation state ‘+III’ is a commonly used Lewis acid catalyst in organic synthesis. In contrast, gallium in its less stable low-oxidation state ‘+I’ is under-explored, but may display both acceptor and donor properties at a single site (ambiphilicity). Based on the hypothesis that potentially ambiphilic gallium(I) –oxidatively generated in situ from gallium(0) using a silver salt– may activate both basic and acidic reagents, various gallium(I)-catalyzed carbon–carbon bond formations have been developed. These include catalytic C–O and C–B bond activations of electrophiles (acetals and aminals) and pro-nucleophiles (allyl and allenyl boronates), respectively. Gallium(III) and other metal Lewis acids have proved to be ineffective. These results represent the first catalytic use of gallium(0) in organic synthesis and a rare example of gallium(I) catalysis. The identity of the gallium(I) catalyst and its regeneration have been confirmed by 71Ga NMR analysis, and a reactive allyl–Ga(I) intermediate has been detected for the first time. In combination with 11B NMR and HRMS analyses, an SN1 reaction mechanism has been proposed. Importantly, the potential for asymmetric gallium(I) catalysis has been demonstrated using a chiral silver co-catalyst (40% ee). This gallium(I) chemistry has proved to be applicable to the catalytic activation of other electrophiles, including ethers or aldehydes, and pro-nucleophiles such as boranes, silanes, or tin-based reagents. Finally, the potential of a related low-oxidation aluminium catalyst has been explored for C–C bond formation.
Supervisor: Schneider, Uwe ; Hulme, Alison Sponsor: Engineering and Physical Sciences Research Council (EPSRC)
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.716587  DOI: Not available
Keywords: gallium ; aluminium ; low-oxidation state ; catalysis ; asymmetric catalysis
Share: