Use this URL to cite or link to this record in EThOS: http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.716576
Title: Robust spectrum sensing techniques for cognitive radio networks
Author: Huang, Qi
Awarding Body: University of Edinburgh
Current Institution: University of Edinburgh
Date of Award: 2016
Availability of Full Text:
Access from EThOS:
Full text unavailable from EThOS. Please try the link below.
Access from Institution:
Abstract:
Cognitive radio is a promising technology that improves the spectral utilisation by allowing unlicensed secondary users to access underutilised frequency bands in an opportunistic manner. This task can be carried out through spectrum sensing: the secondary user monitors the presence of primary users over the radio spectrum periodically to avoid harmful interference to the licensed service. Traditional energy based sensing methods assume the value of noise power as prior knowledge. They suffer from the noise uncertainty problem as even a mild noise level mismatch will lead to significant performance loss. Hence, developing an efficient robust detection method is important. In this thesis, a novel sensing technique using the F-test is proposed. By assuming a multiple antenna assisted receiver, this detector uses the F-statistic as the test statistic which offers absolute robustness against the noise variance uncertainty. In addition, since the channel state information (CSI) is required to be known, the impact of CSI uncertainty is also discussed. Results show the F-test based sensing method performs better than the energy detector and has a constant false alarm probability, independent of the accuracy of the CSI estimate. Another main topic of this thesis is to address the sensing problem for non-Gaussian noise. Most of the current sensing techniques consider Gaussian noise as implied by the central limit theorem (CLT) and it offers mathematical tractability. However, it sometimes fails to model the noise in practical wireless communication systems, which often shows a non-Gaussian heavy-tailed behaviour. In this thesis, several sensing algorithms are proposed for non-Gaussian noise. Firstly, a non-parametric eigenvalue based detector is developed by exploiting the eigenstructure of the sample covariance matrix. This detector is blind as no information about the noise, signal and channel is required. In addition, the conventional energy detector and the aforementioned F-test based detector are generalised to non-Gaussian noise, which require the noise power and CSI to be known, respectively. A major concern of these detection methods is to control the false alarm probability. Although the test statistics are easy to evaluate, the corresponding null distributions are difficult to obtain as they depend on the noise type which may be unknown and non-Gaussian. In this thesis, we apply the powerful bootstrap technique to overcome this difficulty. The key idea is to reuse the data through resampling instead of repeating the experiment a large number of times. By using the nonparametric bootstrap approach to estimate the null distribution of the test statistic, the assumptions on the data model are minimised and no large sample assumption is invoked. In addition, for the F-statistic based method, we also propose a degrees-of-freedom modification approach for null distribution approximation. This method assumes a known noise kurtosis and yields closed form solutions. Simulation results show that in non-Gaussian noise, all the three detectors maintain the desired false alarm probability by using the proposed algorithms. The F-statistic based detector performs the best, e.g., to obtain a 90% detection probability in Laplacian noise, it provides a 2.5 dB and 4 dB signal-to-noise ratio (SNR) gain compared with the eigenvalue based detector and the energy based detector, respectively.
Supervisor: Thompson, John ; Mulgrew, Bernie Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.716576  DOI: Not available
Keywords: signal detection ; spectrum sensing ; bootstrap sampling
Share: