Use this URL to cite or link to this record in EThOS: http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.716034
Title: Charging of electric vehicles at commercial buildings
Author: Marmaras, Charalampos
Awarding Body: Cardiff University
Current Institution: Cardiff University
Date of Award: 2017
Availability of Full Text:
Access from EThOS:
Full text unavailable from EThOS. Thesis embargoed until 26 May 2018
Access from Institution:
Abstract:
The objective of this thesis was to investigate the feasibility of EV charging management for reducing the electricity cost of commercial buildings. A predictive model was developed to assist the commercial building manager reduce its energy bills by predicting the “triad” peak dates and the building’s energy demand. Real weather data were analysed and considered to increase the accuracy of the forecast. The model was evaluated using real “triad” peak, weather and energy consumption data from a commercial building facility in Manchester. To enable the building manager reduce the EV charging costs, a charging control algorithm was developed and its impact on the demand profile and daily electricity cost of a commercial building facility were studied. The predictive model and the charging control algorithm were integrated into a cloud-based Local Energy Management System (LEMS) for the aggregation and flexible demand management of buildings, energy storage units and EVs. The operation of the LEMS was demonstrated through simulation scenarios using real data from a commercial building facility in Manchester. To fully understand the EV integration consequences, the behaviour of the EV drivers and its impact on the road transport and electric power system has been studied. A multi-agent simulation model was developed to simulate the charging and routing behaviour of the EV drivers. The EV drivers were simulated as autonomous agents in a complex environment consisted of an electric power and road transport network. Different behavioural profiles were considered to describe the way an EV driver deals with the everyday challenges.
Supervisor: Not available Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.716034  DOI: Not available
Keywords: TK Electrical engineering. Electronics Nuclear engineering
Share: