Use this URL to cite or link to this record in EThOS: http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.714766
Title: Production and evaluation of 236gNp and reference materials for naturally occurring radioactive materials
Author: Larijani, C.
Awarding Body: University of Surrey
Current Institution: University of Surrey
Date of Award: 2017
Availability of Full Text:
Access from EThOS:
Access from Institution:
Abstract:
This thesis is based on the development of a radiochemical separation scheme capable of separating both 236gNp and 236Pu from a uranium target of natural isotopic composition (~1 g uranium) and ~200 MBq of fission decay products. The isobaric distribution of fission residues produced following the bombardment of a natural uranium target with a beam of 25 MeV protons has been evaluated. Decay analysis of thirteen isobarically distinct fission residues were carried out using high-resolution γ-ray spectrometry at the UK National Physical Laboratory. Stoichiometric abundances were calculated via the determination of absolute activity concentrations associated with the longest-lived members of each isobaric chain. This technique was validated by computational modelling of likely sequential decay processes through an isobaric decay chain. The results were largely in agreement with previously published values for neutron bombardments on natural uranium at energies of 14 MeV. Higher relative yields of products with mass numbers A~110–130 were found, consistent with the increasing yield of these radionuclides as the bombarding energy is increased. Using literature values for the production cross-section for fusion of protons with uranium targets, it is estimated that an upper limit of approximately 250 Bq of activity from the 236Np ground state was produced in this experiment. Using a radiochemical separation scheme, Np and Pu fractions were separated from the produced fission decay products, with analyses of the target-based final reaction products made using Inductively Couple Plasma Mass Spectrometry (ICP-MS) and high-resolution α and γ-ray spectrometry. In a separate research theme, reliable measurement of Naturally Occurring Radioactive Materials is of significance in order to comply with environmental regulations and for radiological protection purposes. The thesis describes the standardisation of three reference materials, namely Sand, Tuff and TiO2 which can serve as quality control materials to achieve traceability, method validation and instrument calibration. The sample preparation, material characterization via γ, α and Inductively Coupled Plasma Mass Spectrometry (ICP-MS) and the assignment of values for both the 4n Thorium and 4n + 2 Uranium decay series are presented.
Supervisor: Regan, P. H. Sponsor: National Measurement Office ; European Metrology Research Project
Qualification Name: Thesis (Eng.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.714766  DOI: Not available
Share: