Use this URL to cite or link to this record in EThOS:
Title: Dimension theory of random self-similar and self-affine constructions
Author: Troscheit, Sascha
Awarding Body: University of St Andrews
Current Institution: University of St Andrews
Date of Award: 2017
Availability of Full Text:
Access through EThOS:
Access through Institution:
This thesis is structured as follows. Chapter 1 introduces fractal sets before recalling basic mathematical concepts from dynamical systems, measure theory, dimension theory and probability theory. In Chapter 2 we give an overview of both deterministic and stochastic sets obtained from iterated function systems. We summarise classical results and set most of the basic notation. This is followed by the introduction of random graph directed systems in Chapter 3, based on the single authored paper [T1] to be published in Journal of Fractal Geometry. We prove that these attractors have equal Hausdorff and upper box-counting dimension irrespective of overlaps. It follows that the same holds for the classical models introduced in Chapter 2. This chapter also contains results about the Assouad dimensions for these random sets. Chapter 4 is based on the single authored paper [T2] and establishes the box-counting dimension for random box-like self-affine sets using some of the results and the notation developed in Chapter 3. We give some examples to illustrate the results. In Chapter 5 we consider the Hausdorff and packing measure of random attractors and show that for reasonable random systems the Hausdorff measure is zero almost surely. We further establish bounds on the gauge functions necessary to obtain positive or finite Hausdorff measure for random homogeneous systems. Chapter 6 is based on a joint article with J. M. Fraser and J.-J. Miao [FMT] to appear in Ergodic Theory and Dynamical Systems. It is chronologically the first and contains results that were extended in the paper on which Chapter 3 is based. However, we will give some simpler, alternative proofs in this section and crucially also find the Assouad dimension of some random self-affine carpets and show that the Assouad dimension is always `maximal' in both measure theoretic and topological meanings.
Supervisor: Falconer, K. J. ; Todd, Michael John Sponsor: Engineering and Physical Sciences Research Council (EPSRC) ; Institute for Computational and Experimental Research in Mathematics (ICERM) ; Instituto de Matemática Pura e Aplicada (Brazil) ; Brazilian-European partnership in Dynamical Systems (BREUDS)
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID:  DOI: Not available
Keywords: Fractal geometry ; Random attractors ; Iterated function systems ; Dimension theory