Use this URL to cite or link to this record in EThOS: http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.712902
Title: Inference as a data management problem
Author: Liu, Yu
Awarding Body: Imperial College London
Current Institution: Imperial College London
Date of Award: 2016
Availability of Full Text:
Access through EThOS:
Full text unavailable from EThOS. Please try the link below.
Access through Institution:
Abstract:
Inference over OWL ontologies with large A-Boxes has been researched as a data management problem in recent years. This work adopts the strategy of applying a tableaux-based reasoner for complete T-Box classification, and using a rule-based mechanism for scalable A-Box reasoning. Specifically, we establish for the classified T-Box an inference framework, which can be used to compute and materialise inference results. The inference we focus on is type inference in A-Box reasoning, which we define as the process of deriving for each A-Box instance its memberships of OWL classes and properties. As our approach materialises the inference results, it in general provides faster query processing than non-materialising techniques, at the expense of larger space requirement and slower update speed. When the A-Box size is suitable for an RDBMS, we compile the inference framework to triggers, which incrementally update the inference materialisation from both data inserts and data deletes, without needing to re-compute the whole inference. More importantly, triggers make inference available as atomic consequences of inserts or deletes, which preserves the ACID properties of transactions, and such inference is known as transactional reasoning. When the A-Box size is beyond the capability of an RDBMS, we then compile the inference framework to Spark programmes, which provide scalable inference materialisation in a Big Data system, and our evaluation considers up to reasoning 270 million A-Box facts. Evaluating our work, and comparing with two state-of-the-art reasoners, we empirically verify that our approach is able to perform scalable inference materialisation, and to provide faster query processing with comparable completeness of reasoning.
Supervisor: McBrien, Peter ; Pietzuch, Peter Sponsor: Imperial College London
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.712902  DOI: Not available
Share: