Use this URL to cite or link to this record in EThOS: http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.712753
Title: Cloud-computing strategies for sustainable ICT utilization : a decision-making framework for non-expert Smart Building managers
Author: Mualla, Karmin Jamil
Awarding Body: Heriot-Watt University
Current Institution: Heriot-Watt University
Date of Award: 2016
Availability of Full Text:
Access from EThOS:
Access from Institution:
Abstract:
Virtualization of processing power, storage, and networking applications via cloud-computing allows Smart Buildings to operate heavy demand computing resources off-premises. While this approach reduces in-house costs and energy use, recent case-studies have highlighted complexities in decision-making processes associated with implementing the concept of cloud-computing. This complexity is due to the rapid evolution of these technologies without standardization of approach by those organizations offering cloud-computing provision as a commercial concern. This study defines the term Smart Building as an ICT environment where a degree of system integration is accomplished. Non-expert managers are highlighted as key users of the outcomes from this project given the diverse nature of Smart Buildings’ operational objectives. This research evaluates different ICT management methods to effectively support decisions made by non-expert clients to deploy different models of cloud-computing services in their Smart Buildings ICT environments. The objective of this study is to reduce the need for costly 3rd party ICT consultancy providers, so non-experts can focus more on their Smart Buildings’ core competencies rather than the complex, expensive, and energy consuming processes of ICT management. The gap identified by this research represents vulnerability for non-expert managers to make effective decisions regarding cloud-computing cost estimation, deployment assessment, associated power consumption, and management flexibility in their Smart Buildings ICT environments. The project analyses cloud-computing decision-making concepts with reference to different Smart Building ICT attributes. In particular, it focuses on a structured programme of data collection which is achieved through semi-structured interviews, cost simulations and risk-analysis surveys. The main output is a theoretical management framework for non-expert decision-makers across variously-operated Smart Buildings. Furthermore, a decision-support tool is designed to enable non-expert managers to identify the extent of virtualization potential by evaluating different implementation options. This is presented to correlate with contract limitations, security challenges, system integration levels, sustainability, and long-term costs. These requirements are explored in contrast to cloud demand changes observed across specified periods. Dependencies were identified to greatly vary depending on numerous organizational aspects such as performance, size, and workload. The study argues that constructing long-term, sustainable, and cost-efficient strategies for any cloud deployment, depends on the thorough identification of required services off and on-premises. It points out that most of today’s heavy-burdened Smart Buildings are outsourcing these services to costly independent suppliers, which causes unnecessary management complexities, additional cost, and system incompatibility. The main conclusions argue that cloud-computing cost can differ depending on the Smart Building attributes and ICT requirements, and although in most cases cloud services are more convenient and cost effective at the early stages of the deployment and migration process, it can become costly in the future if not planned carefully using cost estimation service patterns. The results of the study can be exploited to enhance core competencies within Smart Buildings in order to maximize growth and attract new business opportunities.
Supervisor: Pender, Gareth ; Jenkins, David Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.712753  DOI: Not available
Share: