Use this URL to cite or link to this record in EThOS: http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.712388
Title: Eucalypts as a genus for short rotation forestry in Great Britain
Author: Leslie, Andrew Dunbar
ISNI:       0000 0004 6063 2376
Awarding Body: University of Edinburgh
Current Institution: University of Edinburgh
Date of Award: 2016
Availability of Full Text:
Access through EThOS:
Full text unavailable from EThOS. Please try the link below.
Access through Institution:
Abstract:
The study focused on four research objectives: 1. To identify the species and provenances of eucalypts most suitable for biomass production in Great Britain. 2. To compare growth of eucalypts with other promising short rotation forestry genera. 3. To develop volume and biomass functions for E. gunnii. 4. To estimate yields and patterns of growth for E. gunnii. Searches on CAB abstracts and World of Science showed that there was limited research conducted on eucalypts in the UK. This research provides an original contribution to knowledge through; a long term assessment of the performance of species of cold tolerant eucalypts across a range of sites, identification of the basis for the rapid growth of eucalypts in comparison with trees from other genera, identification of the best fit function to describe stem form in E.gunnii and a characterisation of the pattern of growth in this species. The thesis provides an account of the long history of eucalypts in the UK, the first record of a eucalypt being planted in Britain probably being Eucalyptus obliqua in the late 1700s (Aiton 1789). A review is then provided of the experience and constraints to growing nine eucalypt species in the UK and their potential for short rotation forestry are described. The rapid growth of eucalypts makes them well suited to short rotation forestry, but there are considerable risks from frosts and extreme winters. Results from a trial established in Cumbria, north west England are described. Survival and growth was compared between E.gunnii, E. nitens and native or naturalised species, identified by Hardcastle (2006) as having potential for short rotation forestry. The rapid rate of growth of E. gunnii was attributed to a combination of large leaf area, a long period of growth during the year and a high specific leaf area. There was 99% mortality of E. nitens at the trial over winter, preventing comparison with other species. At the same trial and assessment was made of frost damage during the winter of 2009-2010, which proved to be the coldest for thirty years (Met Office 2010). E. gunnii was found to be more cold-tolerant than E. nitens, with 35% of the former surviving the winter and less than 1% of the latter. Larger trees were damaged more so than smaller trees reinforcing the argument for good silviculture to promote rapid, early growth. The study on stem form and growth of E. gunnii represents the first in the UK. Volume, height and dbh of a total of 636 trees, measured by felling, optical dendrometer and terrestrial laser scanner were used to test the goodness of fit of a volume function developed in France by AFOCEL and is South America by Shell Oil. The AFOCEL function was found to predict volume with less bias and be suitable for all but the smallest trees. Characterisation of growth curves using mined historic data indicated yields of 16 m3 ha-1 y-1 or approximately 8 t ha-1 y-1 at 20 years old. In contrast, growth curves derived from stem analysis of nine trees from Chiddingfold (south east England) and Glenbranter (central western Scotland) indicated lower yields at 7 m3 ha-1 y-1 at age 28 years and 4.5 m3 ha-1 y-1 at age 30 years respectively. Evidence from plantings elsewhere in the UK show that higher rates of growth are possible, but also that yields are often compromised by high mortality.
Supervisor: Mencuccini, Maurizio ; Perks, Mike Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.712388  DOI: Not available
Keywords: Eucalyptus ; Great Britain ; short rotation forestry
Share: