Use this URL to cite or link to this record in EThOS: http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.712342
Title: Self-assembly of rod-like colloids at the air-water interface
Author: Li, Tao
ISNI:       0000 0004 6063 1402
Awarding Body: University of Edinburgh
Current Institution: University of Edinburgh
Date of Award: 2016
Availability of Full Text:
Access from EThOS:
Full text unavailable from EThOS. Please try the link below.
Access from Institution:
Abstract:
Two-dimensional (2D) colloidal materials and their assembly are of scientific significance and industrial importance. The development of 2D colloidal structures is a key stepping stone towards three-dimensional (3D) structures in relation to controlled chemical composition, morphology, assembly and so on. Nowadays, uniform colloidal structures with complexity in both shape and interactions have become a popular topic in fundamental colloid science and applications. Being motivated by this, in this thesis, micro-scale colloidal rods and self-assembled dipeptides have been studied experimentally at the air-water interface. Monolayers containing these colloidal materials were created in a Langmuir trough. Surface pressure measurements, microscopic observations and many other techniques were combined for the investigation. The aim of this work is to understand the phase behaviours in complex monolayers, including the phase transitions during compression, the flipping dynamics of micro-rods, the contribution of dipole-dipole interactions between magnetic rods, and the interfacial self-assembly process of dipeptide molecules. Iron oxide micro-rods (β-FeOOH @silica) with different aspect ratios have been synthesized to create the monolayers at an air-water interface. Microscopic observations reveal a sequence of phase transitions by compressing the monolayers. It has been proved that the aspect ratio of the rods plays an important role in the phase transitions, —short rods flip into a perpendicular position relative to the interface to relieve the compressional stress, while longer rods form multilayers under compression. Magnetic rods (Fe3O4) were converted from the synthesized FeOOH rods. They can be aligned in an external field, which further induces the reorganization at the interface. To study these magnetic rods, differential dynamic microscopy (DDM) was carried out to measure the magnetic moment. Their interfacial properties were investigated in an external field applied perpendicular and parallel to the interface, respectively. A magnetic field-induced flipping process has been observed, which proves the theoretical prediction. Besides rod-like particles, naphthalene dipeptides have been successfully trapped at the interface of a low pH subphase, self-assembling into a hydrogel film. The mechanism of interfacial self-assembly has been studied. Both FTIR spectra and AFM images are used to investigate the fibrous structures of the film. The film has elastic properties and buckles under compression. Moreover, dipeptide hydrogel induced by metal ions has been used to create a wet foam system, which owns the advantages of long-term stability (more than two weeks), low cost, and easy preparation.
Supervisor: Clegg, Paul ; MacPhee, Cait Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.712342  DOI: Not available
Keywords: self-assembly ; rods ; Langmuir films
Share: