Use this URL to cite or link to this record in EThOS: http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.707623
Title: Quantitative microscopy workflows for the study of cellular receptor trafficking
Author: Pike, Jeremy Andrew
ISNI:       0000 0004 6063 0370
Awarding Body: University of Birmingham
Current Institution: University of Birmingham
Date of Award: 2017
Availability of Full Text:
Access through EThOS:
Full text unavailable from EThOS. Thesis embargoed until 01 Jan 2018
Access through Institution:
Abstract:
The trafficking and signalling of cellular receptors are complex, intertwined processes with many feedback mechanisms. Confocal microscopy is a powerful tool to study the trafficking of receptors. The aim of this thesis was to report and develop workflows to quantify the spatio-temporal dynamics of receptor trafficking and colocalization using confocal microscopy. Importantly, the workflows should be reproducible and unbiased, as well as automated and accurate. A 4D level set approach is developed to enable accurate cellular segmentation. Temporal constraints are introduced to further improve segmentation accuracy. This novel approach is thoroughly validated, and statistically significant performance increase over equivalent 2D and 3D approaches is demonstrated. We present a confocal microscopy based RNAi depletion screen. Specifically, quantitative workflows to identify genes which perturb the trafficking of receptor are described. Finally, a critical review of current approaches to the quantification of colocalization between receptors and endosomes is presented. Improvements to existing techniques and complete workflows are provided for 4D data (3D time-lapse). Together the described protocols provide a complete microscopy based platform to identify and investigate regulators of receptor signalling and trafficking.
Supervisor: Not available Sponsor: Engineering and Physical Sciences Research Council (EPSRC)
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.707623  DOI: Not available
Keywords: QD Chemistry
Share: