Use this URL to cite or link to this record in EThOS: http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.706680
Title: Non-equilibrium thermodynamics in quantum many-body systems
Author: Fusco, Lorenzo
ISNI:       0000 0004 6058 3498
Awarding Body: Queen's University Belfast
Current Institution: Queen's University Belfast
Date of Award: 2016
Availability of Full Text:
Full text unavailable from EThOS. Please contact the current institution’s library for further details.
Abstract:
Thermodynamics is one of the pillars of modern science. Understanding which are the boundaries for the applicability of a theory is fundamental for every science and thermodynamics makes no exception. This Thesis studied the implications of thermodynamic transformations applied to quantum systems, particularly discussing the limits of a proper thermodynamic interpretation of such a transformation for a quantum many-body system. First a framework is developed to give a physical meaning to the full statistics of the work distributions for a many-body system, with particular emphasis on the quantum Ising model. Signatures of criticality are found at any level of the statistics of the work distribution. Furthermore, a detailed study of cyclic work extraction protocols is reported, for the case of the Dicke model, analysing the interplay between entanglement and phase transition from the point of view of non-equilibrium thermodynamics. Afterwards, a study of non-equilibrium thermodynamics of open quantum systems is reported. The first experimental reconstruction of the irreversible entropy production for a critical quantum manybody system is demonstrated, showing an excellent agreement with the theoretical predictions. Finally, in the framework of thermodynamics of quantum jump trajectories, a novel approach to the resolution of the large-deviation function is derived. Using this method many studies on the thermodynamics of open quantum many-body systems can be realised in the future.
Supervisor: Not available Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.706680  DOI: Not available
Share: