Use this URL to cite or link to this record in EThOS: http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.705802
Title: Deconstruction of biomass in ionic liquids : reactivity of cellulose
Author: Shikh Zahari, Shikh Mohd Shahrul Nizan
ISNI:       0000 0004 6061 5621
Awarding Body: Imperial College London
Current Institution: Imperial College London
Date of Award: 2015
Availability of Full Text:
Access from EThOS:
Full text unavailable from EThOS. Please try the link below.
Access from Institution:
Abstract:
The reactivity of cellulose in alkylimidazolium hydrogen sulfate-water ([CnCmim][HSO4]/H2O) mixtures during a biomass deconstruction process at 120 °C was investigated. Two types of sample, Miscanthus and a model polymer cellulose, Microcrystalline Sigmacell-Cellulose (MCC), were used. The studied variables included: [HSO4]-ionic liquids with different acidities, 1-butylimidazolium hydrogen sulfate, [HC4im][HSO4], and 1-butyl-3-methylimidazolium hydrogen sulfate, [C4C1im][HSO4]; acid-to-water ([CnCmim][HSO4]/H2O) ratio, and incubation period. A number of analysis tools and chemical methods were employed to characterise the resultant cellulose products: Scanning Electron Microscopy and Energy Dispersed X-Ray (SEM-EDX), Infrared Spectroscopy, Matrix Assisted Laser Desorption/Ionisation with Time of Flight (MALDI-TOF) Mass Spectroscopy, CHNS elemental analysis, viscosity measurement, compositional analysis and enzymatic saccharification. Deconstruction of Miscanthus in a [HC4im][HSO4]/H2O mixture at 120 °C for 22 h successfully separated cellulose, hemicellulose and lignin. A study on the purification of cellulose sample found that inadequate washing allowed the [HC4im][HSO4] traces to be physically adsorbed. After an extensive washing, indirect evidence, indicating that [HSO4]- anions had chemically adsorbed, was revealed. An investigation involving incubation of MCC in [CnCmim][HSO4]/H2O mixtures at 120 °C was conducted, replicating the deconstruction process. MALDI-TOF analysis demonstrated that the '[HSO4]' anion had chemically adsorbed on the surface of cellulose, forming sulfur-containing oligosaccharides. However, the type of bond responsible for chemisorption could not be identified. The [HSO4]- anion was the active species for chemisorption, regardless of different acidities of ionic liquids. Incubating MCC in [CnCmim][HSO4]/H2O mixtures at 120 °C also exhibited an interesting interplay between chemisorption and depolymerisation. A positive relationship was predominant in the presence of lower water content. Increasing water content displayed a negative relationship.
Supervisor: Welton, Tom ; Hallett, Jason P. Sponsor: Universiti Teknologi MARA
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.705802  DOI: Not available
Share: