Use this URL to cite or link to this record in EThOS: http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.705089
Title: The perception of surface properties : translucence and gloss
Author: Chadwick, Alice Caitlin
ISNI:       0000 0004 6058 5880
Awarding Body: Durham University
Current Institution: Durham University
Date of Award: 2016
Availability of Full Text:
Access from EThOS:
Full text unavailable from EThOS. Thesis embargoed until 27 Feb 2020
Access from Institution:
Abstract:
The human visual system is sensitive to differences in gloss and translucence, two optical properties which are found in conjunction in many natural materials. They are driven by similar underlying physical properties of light transport - the degree to which light is scattered from the surface of a material, or within the material. This thesis aimed to address some fundamental questions about how gloss and translucence are perceived. Two psychophysical methods (maximum likelihood difference scaling, and conjoint measurement) were used throughout, as they provided an appropriate way of investigating how perceptual experiences related to physical variables. In the introduction, I review the literature on the perception of gloss and translucence. Study 1 investigated the relationship between variables controlling light transport in translucent volumes and percepts of translucence. The results show that translucence perception is not based on estimates of light transport properties per se, but probably uses spatially-related statistical pseudocues in conjunction with other cues. Study 2 examined a similar issue, but the translucent material was presented as a layer enveloping a solid object. Behavioural responses were similar for these translucent materials, which were perceived as glossy layers of coating. Study 3 further explored established findings that perceived translucence shows inconstancy under changes in viewing condition. Perceived translucence was dependent in a complex way on both light-scattering in the material and illumination direction in both volumes and layers of translucent materials. Study 4 used similar layers of subsurface light-scattering and -absorbing material and applied them to multiple base materials. Opacity and a lack of mirror-like reflections enabled observers to make the most accurate independent judgements of darkness and cloudiness. Study 5 explored observers' sensitivity to spatial variation of scatter across a surface using similar layers of coating, and the way in which observers might weight cues differently to answer subtly different questions (judgements of 'shininess' vs. 'cleanliness'). Layer thickness and variation of scatter significantly affected perceived shine and cleanliness, with layer thickness influencing decisions more than variation. Scatter variation contributed to decisions significantly more for judgements of cleanliness than shine. Study 6 investigated how tactile surface roughness influenced perceived gloss. Previous findings have shown that tactile compliance and friction influence perceived gloss, and that friction interacts with visual gloss. Our results showed that surface roughness and visual gloss both affected perceived gloss, but there was no interaction, suggesting that different types of haptic information are combined with visual information differently. Finally, study 7 explored the potential cortical basis of perceived translucence. Through testing a neuropsychological patient, we showed that perceived translucence is dependent on cortical areas not responsible for colour or texture discrimination. The thesis concludes with a discussion of additional recent findings, the implications of the research reported in this thesis, and proposals for future research.
Supervisor: Not available Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.705089  DOI: Not available
Share: