Use this URL to cite or link to this record in EThOS: http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.704930
Title: The preparation of heterogeneous catalysts for the selective transformation of green chemicals and bio-renewables
Author: King, Gavin Morgan
ISNI:       0000 0004 6057 8410
Awarding Body: Cardiff University
Current Institution: Cardiff University
Date of Award: 2016
Availability of Full Text:
Access from EThOS:
Access from Institution:
Abstract:
The work presented in the thesis is comprised of two parts: the first component describes the preparation and optimisation of green catalysts for the oxidation of benzyl alcohol and other select oxidation reactions; the second section is an investigation into the development of catalysts active for the selective hydrogenation of the lignocellulose-derived platform chemicals furfural and furfuryl alcohol to value-added chemicals and biofuel additives. The first research chapter presents an investigation into the optimisation of the catalytic parameters for the preparation of titania-supported gold and palladium monometallic and bimetallic catalysts by the mixing, grinding, and thermal treatment of metal acetate precursors. The effect of metal loading, and metal ratio for the production of a catalyst optimised for the oxidation of various substrates including benzyl alcohol, glycerol, and for the direct synthesis of hydrogen peroxide, is presented. The catalysts have been physically characterised by X-ray photoelectron spectroscopy (XPS), and X-ray diffraction (XRD) with the information derived from which being used to help determine the origin of improved catalytic activity. The second research chapter describes an investigation into the selective hydrogenation of furfuryl alcohol over supported palladium, and modified-palladium catalysts. It has been shown that monometallic titania supported palladium catalysts can be very active for the selective production of 2-methylfuran for reactions performed at room temperature. It has been shown that through addition of a small amount of secondary metal (namely tin, 1 wt%) to the catalyst, the selectivity pattern can be shifted towards the ring-saturated products tetrahydrofurfuryl alcohol, and methyltetrahydrofuran. The final research chapter investigates the hydrogenation of furfural over monometallic palladium catalysts, bimetallic palladium catalysts modified with ruthenium, and a carbon supported monometallic ruthenium catalyst. The metal ratio for the bimetallic catalyst was varied in order to explore its efficacy for the selective production of value-added products. The reaction parameters were increased for the experiments conducted with Ru/C, the results showing that by tuning of temperature and pressure variables, the selectivity to desired products can be altered dramatically.
Supervisor: Not available Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.704930  DOI: Not available
Keywords: QD Chemistry
Share: