Use this URL to cite or link to this record in EThOS: http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.703035
Title: Role of REV-ERBα in the regulation of lung inflammation
Author: Pariollaud, Marie
ISNI:       0000 0004 6060 1537
Awarding Body: University of Manchester
Current Institution: University of Manchester
Date of Award: 2017
Availability of Full Text:
Access from EThOS:
Access from Institution:
Abstract:
The clock-controlled nuclear receptor REV-ERBα has emerged as a critical regulator of multiple pathways involved in metabolism, development and immunity. Recent evidence has highlighted a major role for the clock in epithelial cells regulating lung inflammation, mediated by control of neutrophil chemokine expression. In this thesis, I examined the role of REV-ERBα in pulmonary immunity, using in-vivo gene targeting and nebulised lipopolysaccharide (LPS), a model for gram-negative bacterial infection, ex-vivo cell biology approaches and in vitro cell models. Initial studies of Rev-Erbα knock-out mice revealed an increase in pulmonary neutrophilia and inflammation upon aerosolised LPS challenge. Moreover, by selectively deleting the REV-ERBα DNA binding domain (DBD) in the mouse bronchial epithelium, I observed exaggerated inflammatory responses to LPS and augmented CXCL5 secretion. Interestingly, a dual deletion of REV-ERBα DBD and REV-ERBβ in mouse bronchial epithelium had a more dramatic effect on neutrophil recruitment and chemokine secretion than deletion of just the REV-ERBα DBD; in both basal and bacterial challenged conditions. Ex-vivo analysis revealed bronchial epithelial cells and macrophages both responded to novel REV-ERBα synthetic ligand GSK1362 but displayed divergent inflammatory responses in presence of this compound. Finally, I observed a striking loss of REV-ERBα protein upon pro-inflammatory challenge. Further analysis revealed this degradation was dependent on the 26S proteasome and driven by sumoylation and ubiquitination of REV-ERBα. However, by using novel REV-ERB ligand GSK1362, these post-translational modifications were blocked and the protein protected from degradation. Collectively, my results propose a new model for a central role for REV-ERBα in conferring clock control to lung neutrophilic inflammation. I have also identified a feed-forward circuit activated by inflammatory stimuli, leading to suppression of the endogenous anti-inflammatory REV-ERBα protein. Finally, I have discovered a novel mechanism for small-molecule regulation of REV-ERBα, operating via suppression of endogenous protein ubiquitination process. These observations implicate REV-ERBα as a novel therapeutic target in human inflammatory disease.
Supervisor: Ray, David ; Loudon, Andrew Sponsor: BBSRC ; GlaxoSmithKline
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.703035  DOI: Not available
Keywords: Inflammation ; Lung ; REV-ERB
Share: