Use this URL to cite or link to this record in EThOS: http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.702264
Title: High pressure hydrates of CO2 & materials for carbon storage
Author: Amos, Daniel Michael
ISNI:       0000 0004 6057 0769
Awarding Body: University of Edinburgh
Current Institution: University of Edinburgh
Date of Award: 2015
Availability of Full Text:
Access through EThOS:
Full text unavailable from EThOS. Please try the link below.
Access through Institution:
Abstract:
The class of water-ice compound known as gas hydrate has been of interest to science for sometime where, for instance, gas hydrates make excellent candidates for studying the interactions of water and gas molecules. They are also of relevance to industry, where they present an interesting material for the separation, transport, and storage of different gases, and also due to the vast quantities of methane gas that are trapped in natural gas hydrate formations. While much is known about the behaviour of many gas hydrate systems at high-pressure, the CO2 hydrate system is less well studied, with apparent hydrate dissociation at just 10 kbar, and (prior to this work) an unsolved crystalline phase in the pressure range 6-10 kbar. In this work the CO2-H2O system has been studied at high-pressure and, by heating samples to the liquid state and observing their behaviour on refreezing, it has been confirmed that there are indeed no hydrate phases in the system above 10 kbar (up to at least 40 kbar). While performing this investigation, an interesting effect of CO2 on the behaviour of water crystallisation was also observed, and additionally, a simple yet effective technique for making solubility measurements in the system at high-pressure has been discovered. Using a combination of neutron and x-ray diffraction techniques, the crystal structure of the previously unsolved ‘HP’ CO2 hydrate phase has been determined by ab-initio methods. It has been found to be a new gas hydrate structure, but is shared by a small number of Zintl compounds, and may also be common to the unsolved C0 phase of H2 hydrate. The structure has a characteristic spiral of guest molecule sites, leading to its suggested label as the spiral hydrate structure (s-Sp). Its composition has been measured as a tri-hydrate, and the compressibility of s-Sp and the low-pressure s-I CO2 hydrate phases have also been measured. On cooling to 77 K it has been discovered that a third CO2 hydrate phase is formed with a significantly larger unit cell, which is thought to possess a structure similar to that of s-Sp, but with an ordered arrangement of CO2 molecules. Finally, a pilot study of the high-pressure behaviour of the binary H2-CO2 hydrate system has been performed. Using Raman spectroscopy it has been found that a new mixed hydrate phase exists in the pressure range 5-15 kbar, and it is speculated that this could exhibit a freely tunable H2/CO2 content, based on suspicion that it forms the s-Sp structure. Additionally, it has been found that H2 and CO2 chemically react at room temperature, when compressed to ~5 kbar in a rhenium gasket. From the Raman spectrum this reaction product has been identified to be aqueous-methanol.
Supervisor: Loveday, John ; McMahon, Malcolm Sponsor: Engineering and Physical Sciences Research Council (EPSRC)
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.702264  DOI: Not available
Keywords: high-pressure ; gas hydrates ; CO2 ; neutron diffraction ; charge flipping
Share: