Use this URL to cite or link to this record in EThOS: http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.702260
Title: Investigation of the impact of HNPCC gene deficiency on outcome in epithelial ovarian cancer
Author: Xiao, Xue
ISNI:       0000 0004 6057 0646
Awarding Body: University of Edinburgh
Current Institution: University of Edinburgh
Date of Award: 2015
Availability of Full Text:
Access through EThOS:
Full text unavailable from EThOS. Please try the link below.
Access through Institution:
Abstract:
Hereditary non-polyposis colon cancer syndrome (HNPCC) is associated with an increased risk of developing several types of cancer and is the most common cause of hereditary ovarian cancer after BRCA1 and BRCA2 mutations. HNPCC results from a germline mutation in one of the DNA mismatch repair (MMR) genes: MLH1, MSH2, PMS1, PMS2, MSH6, MSH3 and MLH3. While there has been extensive investigation of MMR deficiency in colorectal cancer, MMR in ovarian cancer is relatively under-investigated. The goal of this project was to study MMR deficiency in ovarian cancer at both the clinical and molecular level. The first aim was to examine the frequency of MMR loss in a large patient cohort and investigate the clinical consequences of MMR deficiency. The second aim was to describe the molecular characteristics of MMR deficiency in ovarian cancer cell lines and establish an in vitro cell line model of MMR deficiency in ovarian cancer. The third aim was to identify synthetic lethal strategies for the treatment of ovarian cancer to maximise cytotoxicity in a MMR-deficient background. In order to characterise the clinical consequences of MMR deficiency, a large patient cohort was studied with regard to MMR status. Three tissue microarrays consisting of 581 ovarian tumours were constructed, and expression of the four most frequently lost MMR proteins: MLH1, MSH2, PMS2 and MSH6 were detected by immunohistochemistry. Afterwards, MMR status and histology subtypes were analysed in combination with the associated clinical data. The overall incidence of MMR deficiency (loss of any MMR protein) was 15.7%, with PMS2 being the most frequently lost protein (9.7%). In addition, MMR deficiency tended to appear in a grouped fashion: MLH1 with PMS2; MSH2 with MSH6. Patients with non-serous subtypes of ovarian cancer, clear cell or mucinous especially, had higher incidence of MMR deficiency compared to patients with serous ovarian cancer. Overall MMR deficient patients were more likely to be diagnosed at early stages compared with MMR proficient patients, and this is probably due to the association between MMR deficiency and non-serous histology. However, platinum-based treatment for patients with MMR deficiency gives no advantage over those without MMR deficiency. Therefore better treatments for this subgroup of patients may be needed. The features of MMR deficiency in ovarian cancer were also characterized at the molecular level. After quantifying mRNA and protein expression of MMR genes in 19 ovarian cell lines, three cell lines (SKOV3, TOV21G and IGROV1) were found to have a defect in MLH1 expression at both the mRNA and protein level. Interestingly, the three cell lines also carried a defect in PMS2 expression at the protein level but not at the mRNA level, which is consistent with our clinical data demonstrating that MLH1 protein and PMS2 protein are paired in loss. In addition, across the 19 cell lines, MLH1 and PMS2 showed positive correlation at both the mRNA level (R=0.53, p=0.02) and protein level (R=0.72, p=0.0006). In order to study co-expression of MLH1 and PMS2, a plasmid encoding the cDNA for MLH1 was transfected into the three MLH1 deficient cell lines; and conversely siRNA targeting MLH1 was transfected into the MMR proficient cell line A2780 and expression of MLH1 protein and PMS2 protein was quantified. The results showed that re-introduction of MLH1 into MLH1 deficient cells resulted in increased expression of PMS2 protein, while knocking down MLH1 in MMR proficient cells leads to decreased PMS2 protein expression. This indicates that MLH1 may play a crucial role in regulating PMS2 protein expression. As the three MLH1 and PMS2 protein deficient cell lines all express PMS2 mRNA, the regulation of PMS2 expression by MLH1 is likely to be at the translational or post-translational level. However, the expression of PMS2 protein was not increased in the absence of MLH1, even when the proteasomal and lysosomal protein degradation pathways were blocked (as seen with SKOV3 cells), suggesting decreased PMS2 protein expression is not due to rapid degradation in the absence of MLH1. Therefore MLH1 may play a role in regulating the synthesis of PMS2 protein at the translational level, rather than preventing the degradation of PMS2. Thus, to investigate the mechanism by which PMS2 protein levels are regulated by MLH1, future work should focus on translational regulation of PMS2. In order to identify synthetic lethal strategies to target MMR deficiency in ovarian cancer, an isogenic cell line model of MMR deficiency was established by stable transfection of a plasmid for MLH1 and its corresponding empty vector into SKOV3 cells. The MLH1+ cell line SAC-1 and MLH1- cell line SN-5 were selected for drug screening based on their phenotype and growth rate. The AlamarBlue assay, with z’ above 0.5, was chosen for drug screening and a kinase inhibitor library containing 362 drugs of known target was screened. Two drugs with similar structures that targeted PLK1 showed greater growth inhibition of SN-5 compared with SAC-1. When the two cell lines were treated with another PLK1 inhibitor, BI2536, with different structure, a 2-fold difference in growth inhibition between SAC-1 and SN-5 was also observed, suggesting PLK1 is a potential synthetic lethal target for MLH1 deficiency in ovarian cancer. Together these data demonstrate that clinically, MMR deficiency is associated with non-serous subtypes of ovarian cancer and specific MMR proteins are paired in loss. While current standard therapy offers no selective benefit to ovarian cancer patients with MMR deficiency, inhibiting PLK1 activity may confer selective benefit.
Supervisor: Gourley, Charlie ; Carragher, Neil Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.702260  DOI: Not available
Keywords: hereditary non-polyposis colon cancer syndrome ; HNPCC ; mismatch repair ; MMR ; PLK1 ; ovarian cancer ; drug screening
Share: