Use this URL to cite or link to this record in EThOS: http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.700607
Title: Optimisation of vibration monitoring nodes in wireless sensor networks
Author: Feng, Guojin
ISNI:       0000 0004 5994 0689
Awarding Body: University of Huddersfield
Current Institution: University of Huddersfield
Date of Award: 2016
Availability of Full Text:
Access through EThOS:
Full text unavailable from EThOS. Thesis embargoed until 01 Oct 2018
Access through Institution:
Abstract:
This PhD research focuses on developing a wireless vibration condition monitoring (CM) node which allows an optimal implementation of advanced signal processing algorithms. Obviously, such a node should meet additional yet practical requirements including high robustness and low investments in achieving predictive maintenance. There are a number of wireless protocols which can be utilised to establish a wireless sensor network (WSN). Protocols like WiFi HaLow, Bluetooth low energy (BLE), ZigBee and Thread are more suitable for long-term non-critical CM battery powered nodes as they provide inherent merits like low cost, self-organising network, and low power consumption. WirelessHART and ISA100.11a provide more reliable and robust performance but their solutions are usually more expensive, thus they are more suitable for strict industrial control applications. Distributed computation can utilise the limited bandwidth of wireless network and battery life of sensor nodes more wisely. Hence it is becoming increasingly popular in wireless CM with the fast development of electronics and wireless technologies in recent years. Therefore, distributed computation is the primary focus of this research in order to develop an advanced sensor node for realising wireless networks which allow high-performance CM at minimal network traffic and economic cost. On this basis, a ZigBee-based vibration monitoring node is designed for the evaluation of embedding signal processing algorithms. A state-of-the-art Cortex-M4F processor is employed as the core processor on the wireless sensor node, which has been optimised for implementing complex signal processing algorithms at low power consumption. Meanwhile, an envelope analysis is focused on as the main intelligent technique embedded on the node due to the envelope analysis being the most effective and general method to characterise impulsive and modulating signatures. Such signatures can commonly be found on faulty signals generated by key machinery components, such as bearings, gears, turbines, and valves. Through a preliminary optimisation in implementing envelope analysis based on fast Fourier transform (FFT), an envelope spectrum of 2048 points is successfully achieved on a processor with a memory usage of 32 kB. Experimental results show that the simulated bearing faults can be clearly identified from the calculated envelope spectrum. Meanwhile, the data throughput requirement is reduced by more than 95% in comparison with the raw data transmission. To optimise the performance of the vibration monitoring node, three main techniques have been developed and validated: 1) A new data processing scheme is developed by combining three subsequent processing techniques: down-sampling, data frame overlapping and cascading. On this basis, a frequency resolution of 0.61 Hz in the envelope spectrum is achieved on the same processor. 2) The optimal band-pass filter for envelope analysis is selected by a scheme, in which the complicated fast kurtogram is implemented on the host computer for selecting optimal band-pass filter and real-time envelope analysis on the wireless sensor for extracting bearing fault features. Moreover, a frequency band of 16 kHz is analysed, which allows features to be extracted in a wide frequency band, covering a wide category of industrial applications. 3) Two new analysis methods: short-time RMS and spectral correlation algorithms are proposed for bearing fault diagnosis. They can significantly reduce the CPU usage, being over two times less and consequently much lower power consumption.
Supervisor: Not available Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.700607  DOI: Not available
Keywords: T Technology (General) ; TA Engineering (General). Civil engineering (General)
Share: