Use this URL to cite or link to this record in EThOS:
Title: Apoptosis-driven activation of macrophages by starry-sky B-cell lymphoma
Author: Willems, Jorine Joanna Lamberta Paulina
ISNI:       0000 0004 5991 7454
Awarding Body: University of Edinburgh
Current Institution: University of Edinburgh
Date of Award: 2015
Availability of Full Text:
Access from EThOS:
Full text unavailable from EThOS. Please try the link below.
Access from Institution:
In high-grade ‘starry-sky’ non-Hodgkin’s lymphoma (NHL), particularly Burkitt’s lymphoma (BL), large numbers of apoptotic tumour cells are engulfed by infiltrating tumour-associated macrophages (TAM). In situ studies suggest that in starry-sky TAM in a xenograft model of BL various tumour-promoting, trophic, angiogenic, tissue remodelling, and anti-inflammatory pathways are activated. Furthermore, apoptotic cells have been shown to activate expression of tumour-promoting matrix metalloproteinases in macrophages. This work investigates the hypothesis that apoptotic cells or factors released from apoptotic cells induce additional aspects of the starry-sky TAM signature, which serve to promote tumour growth. Macrophages at different stages of maturation, cultured in vitro in the presence of large numbers of apoptotic cells, were shown to differ in phenotype, giving credibility to the hypothesis. Less mature mouse bone marrow-derived macrophages (BMDM) were better at migrating towards apoptotic cells, whereas mature BMDM were better at phagocytosing them. Lactoferrin, which is released from cells undergoing apoptosis and inhibits the migration of neutrophils, was selected as a candidate mediator in the activation of macrophages by apoptotic cells. Lactoferrin was shown to bind viable human and murine monocytes and macrophages, however only high concentrations, which are unlikely to be physiologically or clinically relevant, were found to affect expression of starry-sky TAM genes or reduce classically-activated macrophage cytotoxicity. The direct effect of apoptotic cells on macrophage activation was assessed. Mature BMDM were not used for these studies as their development in vitro in a highly apoptotic environment was judged likely to bias their activation state toward that of TAM, therefore macrophages were first classically-activated with IFN-γ and LPS. This reduced the expression of many starry-sky TAM genes, including several genes associated with responses to apoptotic cells. However, classical activation did not inhibit apoptotic cell engulfment, but rather enhanced it. Co-culture with apoptotic cells, but not viable cells, increased the gene expression of Gas6, Mrc1, Cd36, Timp2, and Pparg, and the latter was dependent on direct interaction with macrophages rather than factors released from apoptotic cells. Furthermore, classically-activated macrophages were found to induce apoptosis in lymphoma cells, and although pre-co-culture of the macrophages with apoptotic cells did not reduce their ability to induce apoptosis, it enhanced tumour cell growth. Macrophage deficiency of IL-4Rα or galectin-3 did not affect classically-activated macrophage responses to apoptotic cells. However, classical activation of galectin-3 deficient macrophages appeared to restore the decreased ability of galectin-3 deficient, untreated macrophages to phagocytose apoptotic cells. Because of the unique new method of laser-capture microdissection by which starry-sky TAM signatures were established, direct comparisons with expression databases of tissue and in vitro cultured macrophages were not possible, but indirect comparisons suggest starry-sky TAM activation reflects the activation phenotype of a mixture of tissue macrophages. Furthermore, it highlighted phagocytosis as one of the most important pathways activated by starry-sky TAM. Together the results presented here suggest apoptotic lymphoma cells can shape TAM activation signatures in starry-sky NHL, even when macrophages are pre-activated to induce apoptosis in lymphoma cells. This is important when considering the consequences of anti-cancer therapies that induce apoptosis or aim to redirect phagocyte activation.
Supervisor: Gregory, Chris ; Rossi, Adriano Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID:  DOI: Not available
Keywords: apoptosis ; macrophage ; tumour-associated macrophages ; TAM ; lymphoma ; Burkitt’s lymphoma