Use this URL to cite or link to this record in EThOS: http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.699990
Title: Cell wall polysaccharides in charophytic algae
Author: O'Rourke, Christina Margaret
ISNI:       0000 0004 5991 2290
Awarding Body: University of Edinburgh
Current Institution: University of Edinburgh
Date of Award: 2014
Availability of Full Text:
Access from EThOS:
Full text unavailable from EThOS. Please try the link below.
Access from Institution:
Abstract:
Plants colonised land 460 million years ago and charophytes represent the closest living relatives of land plants. The ability to live on land may depend on the presence of certain cell wall polysaccharides such as xyloglucan, a hemicellulose exclusively found in land plants (Popper and Fry, 2003). The cell walls of charophytes are poorly characterised. The aim of this project was to use biochemical techniques to characterise the cell wall polysaccharides of charophytic algae in relation to early land plant phylogeny. Hydrolysis of Coleochaete scutata and Chara vulgaris cell walls in 2 M trifluoroacetic acid yielded predominantly GalA, Gal, Glc and Man residues and also some Ara, Xyl and traces of Fuc and Rha. In addition, hydrolysis of Chara pectin revealed an abundance of an unusual monosaccharide, 3-O-methyl-D-galactose, which was structurally identified by a series of 1-D and 2D NMR spectroscopy by COSY, TOCSY, NOESY and HSQC. 3-O-Methyl-D-galactose is more commonly found in lycophyte cell walls where its presence has been suggested to be related to lycophytes’ evolutionarily isolated position (Popper et al., 2001). The newly discovered presence of 3-O-methyl-D-galactose in charophyte pectin suggests that this polymer may be more complex than previously thought. Coleochaete and Chara hemicellulose extracts were fractionated by anion-exchange chromatography into five classes. A strongly anionic fraction from Chara hemicellulose was found to be rich in Glc, Xyl, Gal and Fuc suggestive of a xyloglucan-like polysaccharide. However, XEG was unable to produce diagnostic xyloglucan oligosaccharides in either Coleochaete or Chara hemicelluloses. Xylanase and mannanase digestion of Coleochaete and Chara hemicelluloses gave xylan- and mannan-oligosaccharides. Furthermore, lichenase digestion of Coleochaete hemicellulose yielded an unusual octasaccharide composed of approximately equimolar xylose and glucose. My work has shown that charophyte cell walls are a source of undiscovered monosaccharides and potentially novel pectic and hemicellulosic domains which may have important functions in enabling the successful colonisation of land by plants.
Supervisor: Fry, Stephen ; Oparka, Karl Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.699990  DOI: Not available
Keywords: cell wall ; cell wall polysaccharides ; charophytic algae ; plant phylogeny ; charophyte cell walls
Share: