Use this URL to cite or link to this record in EThOS: http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.699878
Title: Molecular dynamics simulations of surface-active molecules under dynamic conditions found in engines
Author: Doig, Michael
Awarding Body: University of Edinburgh
Current Institution: University of Edinburgh
Date of Award: 2013
Availability of Full Text:
Access through EThOS:
Full text unavailable from EThOS. Thesis embargoed until 28 Nov 2019
Access through Institution:
Abstract:
Lubricants oils play an important role in a wide range of industrial and mechanical processes, where they are used to reduce both the friction and wear between interacting moving surfaces. The current understanding of lubrication is mainly based on empirical evidence, obtained from experiment. In this work, computer simulations are used to gain insight into the microscopic processes that lead to the modification of friction and wear by additive molecules adsorbed on sheared surfaces lubricated by thin liquid films. The specific area of application under consideration is the lubrication of automotive engine parts. The interactions between additive molecules are first determined using density-functional theory calculations. The interactions are then validated against available experimental data, and incorporated in to large-scale molecular-dynamics (MD) simulations, which are used to explore the structure and frictional properties of lubricated surfaces. The surfaces considered are alumina and iron oxide. The lubricating oils are squalane and hexadecane, which are representative of automotive lubricants, and the additive molecules are stearic acid, oleic acid and various oleamides. MD simulations are performed over wide ranges of the relevant physical conditions, namely pressure, temperature, and shear rate. The additives adsorb on to the surfaces and provide a physical connection between the surfaces and the lubricating liquid. The structures of adsorbed films are analysed in microscopic detail using functions of atomic positions and molecular geometry. Several important trends are identified, linking molecular isomerism and architecture with the structure and stability of the adsorbed film. In addition, the simulation results are used to gain insight on recent experimental measurements of film structure. The friction coefficients in various situations are computed and analysed with reference to the structures of the adsorbed films. The synthesis of these data and observed trends yields new insights on the intimate link between the molecular properties of lubricants, and the macroscopic frictional properties of macroscopic lubricated engine parts.
Supervisor: Camp, Philip ; Alexander, Andrew Sponsor: Engineering and Physical Sciences Research Council (EPSRC)
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.699878  DOI: Not available
Keywords: molecular dynamics ; lubricants ; simulation ; additives ; tribology ; friction
Share: