Use this URL to cite or link to this record in EThOS: http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.698727
Title: Higher-order structure in networks : construction and its impact on dynamics
Author: Ritchie, Martin
ISNI:       0000 0004 5992 5702
Awarding Body: University of Sussex
Current Institution: University of Sussex
Date of Award: 2016
Availability of Full Text:
Access from EThOS:
Full text unavailable from EThOS. Please try the link below.
Access from Institution:
Abstract:
Networks are often characterised in terms of their degree distribution and global clustering coefficient. It is assumed that these provide a sufficient parametrisation of networks. However, since the global clustering coefficient is only sensitive to the total number of triangles found in the network, it is evident that two networks could have the same number of triangles but significantly different higher-order structure, i.e., the topologies that result from the placement of closed subgraphs around nodes. The two main objectives of my work are: (1) developing network generating algorithms and network based epidemic models with controllable higher-order structure and (2) investigating the impact of higher-order structure on dynamics on networks. This thesis is based on three papers, corresponding to Chapters. 3, 4 and 5. Chapter 3 presents a novel higher-order structure based network generating algorithm and subgraph counting algorithm. Chapter. 4, generalises a previously proposed ODE model that accurately captures the time evolution of the susceptible-infected-recovered (SIR) dynamics on networks constructed using arbitrary subgraphs. Chapter. 5, improves, extends and generalises the network generating algorithms proposed in the previous two papers. All three chapters demonstrate that for a fixed degree distribution and global clustering, diverse higher-order structure is still possible and that this structure will impact significantly on dynamics unfolding on networks. Hence, we suggest that higher-order structure should receive more attention when analysing network-based systems and dynamics.
Supervisor: Not available Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.698727  DOI: Not available
Keywords: QA0801 Analytic mechanics
Share: