Use this URL to cite or link to this record in EThOS: http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.698463
Title: Synthesis and characterisation of transition metal fluorides
Author: Black, Cameron
ISNI:       0000 0004 5991 1183
Awarding Body: University of St Andrews
Current Institution: University of St Andrews
Date of Award: 2015
Availability of Full Text:
Access from EThOS:
Access from Institution:
Abstract:
This thesis reports exploratory studies on the synthesis of new vanadium and copper-containing compounds, with a particular emphasis on preparing new magnetically-active materials with S = ½ spin configurations. Eighteen crystal structures are reported, sixteen of which represent new compounds. These materials were studied for magnetic behaviour where appropriate. The sixteen vanadium-containing compounds were prepared using either the hydrothermal, Solvothermal or ionothermal synthesis methods at temperatures ranging from 60 °C to 200 °C. Inorganic cations and organic moieties were used as templating agents to direct the structures, often targeting potentially frustrated lattices based on triangular motifs by using ‘triangular' templating molecules such as guanidine. Solvent choices, as well as reactant ratios were all varied in order to produce the new oxide, fluoride and oxyfluoride compounds of vanadium. Three families of vanadium compounds were prepared from these methods; a family of 1D vanadium (IV) oxyfluoride ladder compounds of general formula AVOF₃ (A=K⁺, Rb⁺, Cs⁺ or NH₄⁺), and a family of 1D vanadium fluoride chain compounds of general formula A₂VF₅ (A=K⁺ or NH₄⁺). The third family is comprised of three vanadium-containing compounds of varying dimensionality that share guanidine as the common organic moiety. Several miscellaneous compounds of vanadium such as clusters and a new V (IV) layer were synthesized, and are reported. The two copper compounds containing compounds, analogous to the pseudo-kagome compound, Cu₃Bi(SeO₃)₂O₂Br, were prepared via solid-state techniques. A detailed neutron diffraction study was carried out on the two compounds to measure the evolution of the magnetic properties from room temperature down to 2.5 K. Representational analysis was utilised in order to provide a detailed magnetic model of the compounds.
Supervisor: Lightfoot, Philip Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.698463  DOI: Not available
Keywords: QD181.F1B6 ; Fluorides--Synthesis ; Fluorides--Analysis ; Transition metal compounds
Share: