Use this URL to cite or link to this record in EThOS:
Title: Mathematical optimization and game theoretic methods for radar networks
Author: Deligiannis, Anastasios
ISNI:       0000 0004 5993 6452
Awarding Body: Loughborough University
Current Institution: Loughborough University
Date of Award: 2016
Availability of Full Text:
Access through EThOS:
Access through Institution:
Radar systems are undoubtedly included in the hall of the most momentous discoveries of the previous century. Although radars were initially used for ship and aircraft detection, nowadays these systems are used in highly diverse fields, expanding from civil aviation, marine navigation and air-defence to ocean surveillance, meteorology and medicine. Recent advances in signal processing and the constant development of computational capabilities led to radar systems with impressive surveillance and tracking characteristics but on the other hand the continuous growth of distributed networks made them susceptible to multisource interference. This thesis aims at addressing vulnerabilities of modern radar networks and further improving their characteristics through the design of signal processing algorithms and by utilizing convex optimization and game theoretic methods. In particular, the problems of beamforming, power allocation, jammer avoidance and uncertainty within the context of multiple-input multiple-output (MIMO) radar networks are addressed. In order to improve the beamforming performance of phased-array and MIMO radars employing two-dimensional arrays of antennas, a hybrid two-dimensional Phased-MIMO radar with fully overlapped subarrays is proposed. The work considers both adaptive (convex optimization, CAPON beamformer) and non-adaptive (conventional) beamforming techniques. The transmit, receive and overall beampatterns of the Phased-MIMO model are compared with the respective beampatterns of the phased-array and the MIMO schemes, proving that the hybrid model provides superior capabilities in beamforming. By incorporating game theoretic techniques in the radar field, various vulnerabilities and problems can be investigated. Hence, a game theoretic power allocation scheme is proposed and a Nash equilibrium analysis for a multistatic MIMO network is performed. A network of radars is considered, organized into multiple clusters, whose primary objective is to minimize their transmission power, while satisfying a certain detection criterion. Since no communication between the clusters is assumed, non-cooperative game theoretic techniques and convex optimization methods are utilized to tackle the power adaptation problem. During the proof of the existence and the uniqueness of the solution, which is also presented, important contributions on the SINR performance and the transmission power of the radars have been derived. Game theory can also been applied to mitigate jammer interference in a radar network. Hence, a competitive power allocation problem for a MIMO radar system in the presence of multiple jammers is investigated. The main objective of the radar network is to minimize the total power emitted by the radars while achieving a specific detection criterion for each of the targets-jammers, while the intelligent jammers have the ability to observe the radar transmission power and consequently decide its jamming power to maximize the interference to the radar system. In this context, convex optimization methods, noncooperative game theoretic techniques and hypothesis testing are incorporated to identify the jammers and to determine the optimal power allocation. Furthermore, a proof of the existence and the uniqueness of the solution is presented. Apart from resource allocation applications, game theory can also address distributed beamforming problems. More specifically, a distributed beamforming and power allocation technique for a radar system in the presence of multiple targets is considered. The primary goal of each radar is to minimize its transmission power while attaining an optimal beamforming strategy and satisfying a certain detection criterion for each of the targets. Initially, a strategic noncooperative game (SNG) is used, where there is no communication between the various radars of the system. Subsequently, a more coordinated game theoretic approach incorporating a pricing mechanism is adopted. Furthermore, a Stackelberg game is formulated by adding a surveillance radar to the system model, which will play the role of the leader, and thus the remaining radars will be the followers. For each one of these games, a proof of the existence and uniqueness of the solution is presented. In the aforementioned game theoretic applications, the radars are considered to know the exact radar cross section (RCS) parameters of the targets and thus the exact channel gains of all players, which may not be feasible in a real system. Therefore, in the last part of this thesis, uncertainty regarding the channel gains among the radars and the targets is introduced, which originates from the RCS fluctuations of the targets. Bayesian game theory provides a framework to address such problems of incomplete information. Hence, a Bayesian game is proposed, where each radar egotistically maximizes its SINR, under a predefined power constraint.
Supervisor: Not available Sponsor: EPSRC
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID:  DOI: Not available