Use this URL to cite or link to this record in EThOS:
Title: A mesenchymal stem cell (MSC) niche in mouse incisor
Author: Wang, Longlong
Awarding Body: King's College London
Current Institution: King's College London (University of London)
Date of Award: 2016
Availability of Full Text:
Access from EThOS:
Access from Institution:
Mesenchymal stem cells (MSCs) are heterogeneous cell populations that are identified by their in vitro characteristics while their biological properties and in vivo identities are often less understood. Different from human teeth, mouse incisors grow and erupt continuously throughout their lives and compensate for daily abrasions with the existence of stem cells. However, the precise location of the mesenchymal stem cells (MSCs) in the incisor is unclear. Generally, the MSCs in the mouse incisor are believed to be located in the mesenchyme close to the epithelium cervical loops, since the growth and differentiation of the incisor always initiates at the apical end and extends towards the incisal end. The utilization of label-retaining experiments and transgenic reporter mouse lines has enabled further understanding of the less established identities and properties of dental pulp stem cells in vivo. The work described in this thesis demonstrates that the mesenchymal stem cell niche located at the apical end of mouse incisor contains three distinct but connected cell populations: 1) a slow cycling cell population containing Thy-1+ cells essential for tooth dental pulp and odontoblast formation 2) a Ring1/Bcor-associated fast cycling cell population crucial for maintaining tissue growth and homeostasis of epithelium stem cells in labial cervical loop 3) a quiescent long-term cell population marked by Flamingo homologue Celsr1 might respond to generate new stem cells when the stem cells become depleted.
Supervisor: Sharpe, Paul Thomas ; Mantesso, Andrea ; Grigoriadis, Agamemnon Emil Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID:  DOI: Not available