Use this URL to cite or link to this record in EThOS: http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.695022
Title: Topics in graph colouring and extremal graph theory
Author: Feghali, Carl
ISNI:       0000 0004 5993 8888
Awarding Body: Durham University
Current Institution: Durham University
Date of Award: 2016
Availability of Full Text:
Access from EThOS:
Access from Institution:
Abstract:
In this thesis we consider three problems related to colourings of graphs and one problem in extremal graph theory. Let $G$ be a connected graph with $n$ vertices and maximum degree $\Delta(G)$. Let $R_k(G)$ denote the graph with vertex set all proper $k$-colourings of $G$ and two $k$-colourings are joined by an edge if they differ on the colour of exactly one vertex. Our first main result states that $R_{\Delta(G)+1}(G)$ has a unique non-trivial component with diameter $O(n^2)$. This result can be viewed as a reconfigurations analogue of Brooks' Theorem and completes the study of reconfigurations of colourings of graphs with bounded maximum degree. A Kempe change is the operation of swapping some colours $a$, $b$ of a component of the subgraph induced by vertices with colour $a$ or $b$. Two colourings are Kempe equivalent if one can be obtained from the other by a sequence of Kempe changes. Our second main result states that all $\Delta(G)$-colourings of a graph $G$ are Kempe equivalent unless $G$ is the complete graph or the triangular prism. This settles a conjecture of Mohar (2007). Motivated by finding an algorithmic version of a structure theorem for bull-free graphs due to Chudnovsky (2012), we consider the computational complexity of deciding if the vertices of a graph can be partitioned into two parts such that one part is triangle-free and the other part is a collection of complete graphs. We show that this problem is NP-complete when restricted to five classes of graphs (including bull-free graphs) while polynomial-time solvable for the class of cographs. Finally we consider a graph-theoretic version formulated by Holroyd, Spencer and Talbot (2007) of the famous Erd\H{o}s-Ko-Rado Theorem in extremal combinatorics and obtain some results for the class of trees.
Supervisor: Not available Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.695022  DOI: Not available
Share: