Use this URL to cite or link to this record in EThOS: http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.694425
Title: Electrospun nanofiber scaffolds and crosslinked protein membranes as scaffold materials in tissue engineering
Author: Lu, Zhengsun
ISNI:       0000 0004 5991 4472
Awarding Body: Queen Mary, University of London
Current Institution: Queen Mary, University of London
Date of Award: 2015
Availability of Full Text:
Access from EThOS:
Access from Institution:
Abstract:
Scaffold materials play an essential role in tissue engineering field due to its function of accommodate and guide cell proliferation. In this study, I investigated different types of crosslinked protein membranes that can be produced in microfluidic channels and a number of various types of PLGA electrospun composite nanofiber scaffold to examine their potentials as scaffold materials in tissue engineering. A simplified fabrication technique has been developed to produce a large surface area of crosslinked protein membranes to fulfill the purpose of cell culture experiments. Bovine serum albumin is used along with two acyl chloride crosslinkers, i.e. TCL and IDCL, respectively to accomplish the cross-linking. On the other hand, PLGA is dissolved in HFIP and enhanced with silk fibroin and carbon nanotubes to make composite electrospun materials. The morphology, physicochemical properties and biocompatibility of the membranes are studied. The biocompatibility of the membranes is investigated using cell proliferation of the PC12, ADSCs and neurons cultured on the membranes. Our results show that compared to crosslinked protein membranes, the electrospun materials are easier to prepare, less toxic and more suitable for mass production. Moreover, the electrospun materials are seen to have better biocompatibility in our cell culture study. Furthermore, the composite electrospun materials with high CNTs concentrations demonstrate positive effects on the proliferation of neurons.
Supervisor: Not available Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.694425  DOI: Not available
Keywords: Materials Science ; Tissue Engineering
Share: