Use this URL to cite or link to this record in EThOS: http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.694004
Title: Automated optimization of reconfigurable designs
Author: Kurek, Maciej
ISNI:       0000 0004 5989 642X
Awarding Body: Imperial College London
Current Institution: Imperial College London
Date of Award: 2015
Availability of Full Text:
Access from EThOS:
Full text unavailable from EThOS. Please try the link below.
Access from Institution:
Abstract:
Currently, the optimization of reconfigurable design parameters is typically done manually and often involves substantial amount effort. The main focus of this thesis is to reduce this effort. The designer can focus on the implementation and design correctness, leaving the tools to carry out optimization. To address this, this thesis makes three main contributions. First, we present initial investigation of reconfigurable design optimization with the Machine Learning Optimizer (MLO) algorithm. The algorithm is based on surrogate model technology and particle swarm optimization. By using surrogate models the long hardware generation time is mitigated and automatic optimization is possible. For the first time, to the best of our knowledge, we show how those models can both predict when hardware generation will fail and how well will the design perform. Second, we introduce a new algorithm called Automatic Reconfigurable Design Efficient Global Optimization (ARDEGO), which is based on the Efficient Global Optimization (EGO) algorithm. Compared to MLO, it supports parallelism and uses a simpler optimization loop. As the ARDEGO algorithm uses multiple optimization compute nodes, its optimization speed is greatly improved relative to MLO. Hardware generation time is random in nature, two similar configurations can take vastly different amount of time to generate making parallelization complicated. The novelty is efficient use of the optimization compute nodes achieved through extension of the asynchronous parallel EGO algorithm to constrained problems. Third, we show how results of design synthesis and benchmarking can be reused when a design is ported to a different platform or when its code is revised. This is achieved through the new Auto-Transfer algorithm. A methodology to make the best use of available synthesis and benchmarking results is a novel contribution to design automation of reconfigurable systems.
Supervisor: Luk, Wayne Sponsor: Engineering and Physical Sciences Research Council ; Maxeler Technologies ; Xilinx (Firm) ; European Union
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.694004  DOI: Not available
Share: