Use this URL to cite or link to this record in EThOS: http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.693895
Title: Biomechanics, musculoskeletal modelling, hip joint loads prediction, muscle force estimation
Author: Modenese, Luca
Awarding Body: Imperial College London
Current Institution: Imperial College London
Date of Award: 2012
Availability of Full Text:
Access through EThOS:
Full text unavailable from EThOS. Restricted access.
Access through Institution:
Abstract:
A musculoskeletal model of the lower limb has been implemented and assessed in order to be used as a predictive tool to quantify the hip contact force (HCF) vector acting between the femoral head and the pelvic acetabulum. The model is based on a published anatomical dataset, which has been critically revised and extended. The HCFs obtained through the model have been assessed at multiple levels of detail against measurements from instrumented prostheses from a publicly available dataset. In the first instance, a direct comparison has been undertaken in order to verify predicted HCF magnitudes close to the measured and muscle recruitment consistent with electromyographic activation profiles reported in the literature. Secondly, a trend validation was performed to ensure the correct behaviour of the model when the same daily living task (level walking) was performed with different modalities. Finally, a falsification of the model was performed by challenging it to predict the exact components of the measured hip contact forces for both level walking and stair climbing. The closest achievable predictions were also calculated, together with the accuracy of a conventional use of the model not exploiting a priori knowledge of the joint contact forces. Once the assessment of the model was completed, a dataset of anthropometric, kinematic and kinetic data was collected on eight young healthy subjects performing daily living activities. As a demonstration of the potential use of the dataset, a subject specific model was generated and used to estimate HCF direction and magnitude for level walking and stair climbing, the same activities investigated during model validation. The model was further extended in order to include the upper part of the body and potentially analyze full body kinematics and kinetics. A further modified version of the model was finally developed in order to be used in finite elements analyses or more generally in applications requiring equilibrated sets of muscle and joint forces acting on a bone structure, as the highly discretized representation of the muscles makes the model particularly suitable for this kind of use. The developed model has been implemented in the open source software OpenSim and is freely available for download and use in research.
Supervisor: Bull, Anthony ; Phillips, Andrew Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.693895  DOI: Not available
Share: