Use this URL to cite or link to this record in EThOS: http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.693681
Title: Molecular balances for measuring non-covalent interactions in solution
Author: Adam, Catherine
ISNI:       0000 0004 5923 8777
Awarding Body: University of Edinburgh
Current Institution: University of Edinburgh
Date of Award: 2015
Availability of Full Text:
Access through EThOS:
Full text unavailable from EThOS. Please try the link below.
Access through Institution:
Abstract:
Non-covalent interactions in solution are subject to modulation by surrounding solvent molecules. This thesis presents two experimental molecular balances that have been used to quantify solvent effects on non-covalent interactions, including electrostatic and dispersion interactions. The first chapter introduces literature where non-covalent interactions have been studied in a range of solvents, particularly those where the effects of aqueous or fluorous solvents have been investigated. These solvents are of particular interest as they both invoke solvophobic effects on organic molecules, but have differing chemical and physical properties. The second chapter describes the adaptation of the Wilcox molecular torsion balance to study interactions between organic and fluorinated carbon chains in a range of solvents. Solvent cohesion was found to be the principle force driving both the alkyl and fluorous chains together in aqueous solvents, where no contribution to the interaction energy arising from dispersion forces could be detected. In fluorous and polar organic solvents evidence was found for weak favourable dispersion interactions between the alkyl chains. In contrast dispersion forces between the chains were found to be disrupted by competitive van der Waals interactions with surrounding solvent molecules in apolar organic solvents. Association of the fluorous chains was found to be solely driven by solvent cohesion. The final chapter describes the design and synthesis of a novel synthetic molecular-balance framework and describes its application to simultaneously measure solvent and substituent effects on the position of conformational equilibria. Despite the simplicity of the model system, surprisingly complicated behaviour emerged from the interplay of conformational, intramolecular and solvent effects. Nonetheless, a large data set of experimental equilibrium constants was analysed using a simple solvent model, which was able to account for both the intuitive and more unusual patterns observed. A means of dissecting electrostatic and solvent effects to reveal pseudo gas-phase behaviour has resulted from the analysis of experimental data obtained in many solvents.
Supervisor: Cockroft, Scott ; Lam, Hon Sponsor: Engineering and Physical Sciences Research Council (EPSRC)
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.693681  DOI: Not available
Keywords: solvent effects ; pseudo-gas phase behaviour ; non-covalent interactions ; Wilcox molecular torsion balance ; solvent cohesion
Share: