Use this URL to cite or link to this record in EThOS:
Title: Design and simulation of pressure swing adsorption cycles for CO2 capture
Author: Oreggioni, Gabriel David
ISNI:       0000 0004 5923 7934
Awarding Body: University of Edinburgh
Current Institution: University of Edinburgh
Date of Award: 2015
Availability of Full Text:
Access from EThOS:
Full text unavailable from EThOS. Please try the link below.
Access from Institution:
Carbon capture and storage technologies (CCS) are expected to play a key role in the future energy matrix. Different gas separation processes are under investigation with the purpose of becoming a more economical alternative than solvent based post combustion configurations. Previous works have proved that pressure swing adsorption (PSA) cycles manage to reach similar carbon capture targets than conventional amine process but with approx. a 50% lower specific energy consumption when they are applied at lab scale. These encouraging results suggest that research must be undertaken to study the feasibility of this technology at a low to medium power plant scale. The simulation of PSA cycles is a computationally challenging and time consuming task that requires as well a large set of experimentally measured data as input parameters. The assumption of Equilibrium Theory reduces the amount of empirically determined input variables that are necessary for modelling adsorption dynamics as well as enabling a simpler code implementation for the simulators. As part of this work, an Equilibrium Theory PSA cycle solver (Esim) was developed, the novel tool enables the quantification of the thermodynamic limit for a given PSA cycle allowing as well a pre-selection of promising operating conditions and configurations (high separation efficiency) for further investigation by using full governing equation based software The tool presented in this thesis is able to simulate multi-transition adsorption systems that obey any kind of equilibrium isotherm function without modifying its main code. The second part of this work is devoted to the design, simulation and optimisation of two stage two bed Skarmstrom PSA cycles to be applied as a pre-combustion process in a biomass gasification CHP plant. Simulations were carried out employing an in house software (CySim) in which full governing equations have been implemented. An accurate analysis of the operating conditions and cycle configurations was undertaken in order to improve the performance of the carbon capture unit. It was estimated that the energy penalty associated with the incorporation of the adsorptive pre combustion process was lower for a conventional post combustion solvent unit, leading as well to lower specific energy consumption per unit of captured CO2 and higher overall efficiencies for the CHP plant with installed pre-combustion PSA cycles. This work is pioneer in its kind as far as modelling, simulation, optimisation and integration of PSA units in energy industries is concerned and its results are expected to contribute to the deployment of this technology in the future energy matrix.
Supervisor: Ahn, Hyungwoong ; Brandani, Stefano Sponsor: Engineering and Physical Sciences Research Council (EPSRC)
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID:  DOI: Not available
Keywords: CCS ; carbon capture and storage ; pressure swing adsorption ; PSA ; biomass gasification ; adsorption