Use this URL to cite or link to this record in EThOS:
Title: Validating stereoscopic volume rendering
Author: Roberts, David Anthony Thomas
ISNI:       0000 0004 5923 1508
Awarding Body: Durham University
Current Institution: Durham University
Date of Award: 2016
Availability of Full Text:
Access from EThOS:
Access from Institution:
The evaluation of stereoscopic displays for surface-based renderings is well established in terms of accurate depth perception and tasks that require an understanding of the spatial layout of the scene. In comparison direct volume rendering (DVR) that typically produces images with a high number of low opacity, overlapping features is only beginning to be critically studied on stereoscopic displays. The properties of the specific images and the choice of parameters for DVR algorithms make assessing the effectiveness of stereoscopic displays for DVR particularly challenging and as a result existing literature is sparse with inconclusive results. In this thesis stereoscopic volume rendering is analysed for tasks that require depth perception including: stereo-acuity tasks, spatial search tasks and observer preference ratings. The evaluations focus on aspects of the DVR rendering pipeline and assess how the parameters of volume resolution, reconstruction filter and transfer function may alter task performance and the perceived quality of the produced images. The results of the evaluations suggest that the transfer function and choice of recon- struction filter can have an effect on the performance on tasks with stereoscopic displays when all other parameters are kept consistent. Further, these were found to affect the sensitivity and bias response of the participants. The studies also show that properties of the reconstruction filters such as post-aliasing and smoothing do not correlate well with either task performance or quality ratings. Included in the contributions are guidelines and recommendations on the choice of pa- rameters for increased task performance and quality scores as well as image based methods of analysing stereoscopic DVR images.
Supervisor: Not available Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID:  DOI: Not available