Use this URL to cite or link to this record in EThOS: http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.693313
Title: Advanced digital signal processing for coherent optical OFDM transmissions
Author: Le, Son Thai
ISNI:       0000 0004 5922 3698
Awarding Body: Aston University
Current Institution: Aston University
Date of Award: 2016
Availability of Full Text:
Access through EThOS:
Access through Institution:
Abstract:
Coherent optical orthogonal frequency division multiplexing (CO-OFDM) has been actively considered as a potential candidate for long-haul transmission and 400 Gb/s to 1 Tb/s Ethernet transport because of its high spectral efficiency, efficient implementation, flexibility and robustness against linear impairments such as chromatic dispersion and polarization mode dispersion. However, due to the long symbol duration and narrow subcarrier spacing, CO-OFDM systems are sensitive to laser phase noise and fibre nonlinearity induced penalties. As a result, the development of CO-OFDM transmission technology crucially relies on efficient techniques to compensate for the laser phase noise and fibre nonlinearity impairments. In this thesis, high performance and low complexity digital signal processing techniques for laser phase noise and fibre nonlinearity compensation in CO-OFDM transmissions are demonstrated. For laser phase noise compensation, three novel techniques, namely quasipilot-aided, decision-directed-free blind and multiplier-free blind are introduced. For fibre nonlinear compensation, two novel techniques which are referred to as phase conjugated pilots and phase conjugated subcarrier coding, are proposed. All these abovementioned digital signal processing techniques offer high performances and flexibilities while requiring relatively low complexities in comparison with other existing phase noise and nonlinear compensation techniques. As a result of the developments of these digital signal processing techniques, CO-OFDM technology is expected to play a significant role in future ultra-high capacity optical network. In addition, this thesis also presents preliminary study on nonlinear Fourier transform based transmission schemes in which OFDM is a highly suitable modulation format. The obtained result paves the way towards a truly flexible nonlinear wave-division multiplexing system that allows the current nonlinear transmission limitations to be exceeded.
Supervisor: Not available Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.693313  DOI: Not available
Share: