Use this URL to cite or link to this record in EThOS:
Title: Signature-based videos' visual similarity detection and measurement
Author: Bekhet, Saddam
ISNI:       0000 0004 5919 0873
Awarding Body: University of Lincoln
Current Institution: University of Lincoln
Date of Award: 2016
Availability of Full Text:
Access through EThOS:
Access through Institution:
The quantity of digital videos is huge, due to technological advances in video capture, storage and compression. However, the usefulness of these enormous volumes is limited by the effectiveness of content-based video retrieval systems (CBVR) that still requires time-consuming annotating/tagging to feed the text-based search. Visual similarity is the core of these CBVR systems where videos are matched based on their respective visual features and their evolvement across video frames. Also, it acts as an essential foundational layer to infer semantic similarity at advanced stage, in collaboration with metadata. Furthermore, handling such amounts of video data, especially the compressed-domain, forces certain challenges for CBVR systems: speed, scalability and genericness. The situation is even more challenging with availability of nonpixelated features, due to compression, e.g. DC/AC coefficients and motion vectors, that requires sophisticated processing. Thus, a careful features’ selection is important to realize the visual similarity based matching within boundaries of the aforementioned challenges. Matching speed is crucial, because most of the current research is biased towards the accuracy and leaves the speed lagging behind, which in many cases affect the practical uses. Scalability is the key for benefiting from these enormous available videos amounts. Genericness is an essential aspect to develop systems that is applicable to, both, compressed and uncompressed videos. This thesis presents a signature-based framework for efficient visual similarity based video matching. The proposed framework represents a vital component for search and retrieval systems, where it could be used in three possible different ways: (1)Directly for CBVR systems where a user submits a query video and the system retrieves a ranked list of visually similar ones. (2)For text-based video retrieval systems, e.g. YouTube, when a user submits a textual description and the system retrieves a ranked list of relevant videos. The retrieval in this case works by finding videos that were manually assigned similar textual description (annotations). For this scenario, the framework could be used to enhance the annotation process. This is achievable by suggesting an annotations-set for the newly uploading videos. These annotations are derived from other visually similar videos that can be retrieved by the proposed framework. In this way, the framework could make annotations more relevant to video contents (compared to the manual way) which improves the overall CBVR systems’ performance as well. (3)The top-N matched list obtained by the framework, could be used as an input to higher layers, e.g. semantic analysis, where it is easier to perform complex processing on this limited set of videos. i The proposed framework contributes and addresses the aforementioned problems, i.e. speed, scalability and genericness, by encoding a given video shot into a single compact fixed-length signature. This signature is able to robustly encode the shot contents for later speedy matching and retrieval tasks. This is in contrast with the current research trend of using an exhaustive complex features/descriptors, e.g. dense trajectories. Moreover, towards a higher matching speed, the framework operates over a sequence of tiny images (DC-images) rather than full size frames. This limits the need to fully decompress compressed-videos, as the DC-images are exacted directly from the compressed stream. The DC-image is highly useful for complex processing, due to its small size compared to the full size frame. In addition, it could be generated from uncompressed videos as well, while the proposed framework is still applicable in the same manner (genericness aspect). Furthermore, for a robust capturing of the visual similarity, scene and motion information are extracted independently, to better address their different characteristics. Scene information is captured using a statistical representation of scene key colours’ profiles, while motion information is captured using a graph-based structure. Then, both information from scene and motion are fused together to generate an overall video signature. The signature’s compact fixedlength aspect contributes to the scalability aspect. This is because, compact fixedlength signatures are highly indexable entities, which facilitates the retrieval process over large-scale video data. The proposed framework is adaptive and provides two different fixed-length video signatures. Both works in a speedy and accurate manner, but with different degrees of matching speed and retrieval accuracy. Such granularity of the signatures is useful to accommodate for different applications’ trade-offs between speed and accuracy. The proposed framework was extensively evaluated using black-box tests for the overall fused signatures and white-box tests for its individual components. The evaluation was done on multiple challenging large-size datasets against a diverse set of state-ofart baselines. The results supported by the quantitative evaluation demonstrated the promisingness of the proposed framework to support real-time applications.
Supervisor: Not available Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID:  DOI: Not available
Keywords: G400 Computer Science