Use this URL to cite or link to this record in EThOS:
Title: Role of chance and history during evolution in Chlamydomonas reinhardtii
Author: Lachapelle, Josianne Lyse
ISNI:       0000 0004 5916 734X
Awarding Body: University of Edinburgh
Current Institution: University of Edinburgh
Date of Award: 2016
Availability of Full Text:
Access from EThOS:
Full text unavailable from EThOS. Please try the link below.
Access from Institution:
The extent to which evolution is repeatable has important implications. If evolution is highly repeatable, the trajectories and outcomes of evolution in different lineages will always be the same. On the other hand, if evolution is not repeatable, then trajectories and outcomes will be diverse. Thus, the repeatability of evolution affects our understanding of the nature of biodiversity and can inform the extent to which evolutionary theory can be used to make predictions. The repeatability of evolution depends on the relative contribution of selection, chance, and history. To determine what factors affect the importance of chance and history during evolution, I propagated replicated populations of the unicellular green alga Chlamydomonas reinhardtii in controlled environments. I measured the change in fitness after a few hundred generations and determined how much variation had arisen among replicate populations and among populations with different histories. I applied a similar approach to study the importance of history in extinctions, and measured rates of extinction in populations with different histories. I found that evolution is much less repeatable in small than in large populations because history is more constraining and selection less efficient in small than in large populations. There is also a significant effect of sex and recombination on the repeatability of evolution at the fitness level, but this effect is highly dependent on the environment of selection. Sex can increase the importance of chance or history in some environments, but lower their importance in others, thereby leading to convergence or divergence depending on the environment. Thirdly, I found that the importance of history during evolution does not appear to come from the accumulation of past evolutionary selection pressures, but rather comes from only the most recent selection pressure as it determines genetic correlations for growth between different environments and the amount of genetic variance. Finally, I found that extinction risks are extremely high during continuous environmental deterioration, although a history of sexual reproduction and phenotypic plasticity play an important role in adaptation. By focusing not solely on the effect of treatments on mean trait values, but also on the variance that arises in our evolution experiments, we can gain a better understanding of the contribution that chance and history make to evolution. The repeatability of evolution can therefore inform us about the adaptive vs. stochastic nature of the diversity we see today, and about the specificity or generality of evolutionary outcomes.
Supervisor: Colegrave, Nick ; Reece, Sarah Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID:  DOI: Not available
Keywords: Chlamydomonas reinhardtii ; evolution ; deterministic ; adaption