Use this URL to cite or link to this record in EThOS: http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.690679
Title: Temporal and spatio-temporal regimes of generation of Raman fibre lasers
Author: Tarasov, Nikita
ISNI:       0000 0004 5915 0417
Awarding Body: Aston University
Current Institution: Aston University
Date of Award: 2016
Availability of Full Text:
Access through EThOS:
Access through Institution:
Abstract:
Temporal dynamics of Raman fibre lasers tend to have very complex nature, owing to great cavity lengths and high nonlinearity, being stochastic on short time scales and quasi-continuous on longer time scales. Generally fibre laser intensity dynamics is represented by one-dimensional time-series, which in case of quasi-continuous wave generation in Raman fibre lasers gives little insight into the processes underlying the operation of a laser. New methods of analysis and data representation could help to uncover the underlying physical processes, understand the dynamics or improve the performance of the system. Using intrinsic periodicity of laser radiation, one dimensional intensity time series of a Raman fibre laser was analysed over fast and slow variation time. This allowed to experimentally observe various spatio-temporal regimes of generation, such as laminar, turbulent, partial mode-lock, as well as transitions between them and identify the mechanisms responsible for the transitions. Great cavity length and high nonlinearity also make it difficult to achieve stable high repetition rate mode-locking in Raman fibre lasers. Using Faraday parametric instability in extremely simple linear cavity experimental configuration, a very high order harmonic mode-locking was achieved in ò.ò kmlong Raman fibre laser. The maximum achieved pulse repetition rate was 12 GHz, with 7.3 ps long Gaussian shaped pulses. There is a new type of random lasers – random distributed feedback Raman fibre laser, which temporal properties cannot be controlled by conventionalmode-locking or Q-switch techniques and mechanisms. By adjusting the pump configuration, a very stable pulsed operation of random distributed feedback Raman fibre laser was achieved. Pulse duration varied in the range from 50 to 200 μs depending on the pump power and the cavity length. Pulse repetition rate scaling on the parameters of the system was experimentally identified.
Supervisor: Not available Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.690679  DOI: Not available
Share: