Use this URL to cite or link to this record in EThOS: http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.690529
Title: The role of acute ambient hypoxia in the regulation of myostatin
Author: Elliott, B.
ISNI:       0000 0004 5923 9710
Awarding Body: University of Westminster
Current Institution: University of Westminster
Date of Award: 2015
Availability of Full Text:
Access through EThOS:
Access through Institution:
Abstract:
When exposed to chronic hypoxia by pathophysiological or environmental causes humans show muscle atrophy, challenging homeostasis and increasing mortality rate. Chronic hypoxia also presents with elevated myostatin peptide, a negative regulator of muscle size. This work induced acute hypoxia in healthy individuals; hypothesizing hypoxia would increase myostatin expression in both muscle and plasma in a concentration- and time-dependent manner. Hypoxia (1 % O2) reduced C2C12 myoblast migration and myotube size in vitro. Myotube atrophy was time-dependent, longer exposures showed greater atrophy. Intracellular myostatin peptide was decreased at every time point measured. Myostatin and downstream signalling pathways in muscle showed a high degree of percentage similarity between mouse and human, when amino acid sequences were directly compared. Healthy males (N = 8) were exposed to 20.9 % O2 or 11.9 % O2 for 2 hours. Following hypoxic exposure myostatin peptide was reduced in muscle but not plasma, relative to control conditions. A second cohort (N = 8) was exposed to 12.5 % O2 for 10 hours. Plasma myostatin was decreased following hypoxia, muscle myostatin trended towards increasing. A third cohort (N = 9; n = 8 lowlander, n = 1 Sherpa) was exposed to 10.7 % or 12.3 % O2 for 2 hours. Plasma myostatin was reduced at both concentrations with no difference between concentrations noted. In response to chronic hypoxia, individuals lose muscle mass. Counter to the hypothesis of an increase in myostatin in both muscle and plasma, here a consistent decrease in plasma myostatin following acute hypoxia is seen. Muscle myostatin shows a variable response, with decreasing intracellular expression seen following a 2 hour hypoxic exposure, and trends towards an increase following 10 hours of hypoxia. Decreases in plasma and muscle myostatin may represent myostatin’s movement towards peripheral compartments in these acute timeframes. Hypoxia alone is capable of altering myostatin in healthy individuals; the effects of hypoxia on myostatin appear to differ between the acute timeframes examined here and chronic exposures in environmental or disease models.
Supervisor: Not available Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.690529  DOI: Not available
Share: