Use this URL to cite or link to this record in EThOS:
Title: Linear optics quantum computing with single photons from an atom-cavity system
Author: Holleczek, Annemarie
ISNI:       0000 0004 5922 0630
Awarding Body: University of Oxford
Current Institution: University of Oxford
Date of Award: 2016
Availability of Full Text:
Access from EThOS:
Full text unavailable from EThOS. Restricted access.
Access from Institution:
One of today’s challenges to realise computing based on quantum mechanics is to reliably and scalably encode information in quantum systems. Here, we present a photon source to on-demand deliver photonic quantum bits of information based on a strongly coupled atom-cavity system. The source operates intermittently for periods of up to 100 μs, with a single-photon repetition rate of 1 MHz, and an intra-cavity production efficiency of up to 85%. Our ability to arbitrarily control the photons’ wavepackets and phase profiles, together with long coherence times of 500 ns, allows to store time-bin encoded quantum information within a single photon. To do so, the spatio-temporal envelope of a single photon is sub-divided in d time bins which allows for the delivery of arbitrary qu-d-its. This is done with a fidelity of > 95% for qubits, and 94% for qutrits verified using a newly developed time-resolved quantum-homodyne measurement technique. Additionally, we combine two separate fields of quantum physics by using our deterministic single-photon source to seed linear optics quantum computing (LOQC) circuits. As a step towards quantum networking, it is shown that this photon source can be combined with quantum gates, namely a chip-integrated beam splitter, a controlled-NOT (CNOT) gate as well as a CNOT4 gate. We use this CNOT4 gate to entangle photons deterministically emitted from our source and observe non-classical correlations between events separated by periods exceeding the travel time across the chip by three orders of magnitude. Additionally, we use time-bin encoded qubits to systematically study the de- and re-phasing of quantum states as well as the the effects of time-varying internal phases in photonic quantum circuits.
Supervisor: Kuhn, Axel Sponsor: University College Oxford ; Bobby Berman Scholarship
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID:  DOI: Not available
Keywords: Single Photon Production ; Linear Optics Quantum Computing ; Quantum physics and its applications ; Atomic Physics ; Single Photons ; Cavity QED ; Quantum Information