Use this URL to cite or link to this record in EThOS:
Title: Ultrafast properties of plasmonic nanorod metamaterial
Author: Peruch, Silvia
ISNI:       0000 0004 5917 9121
Awarding Body: King's College London
Current Institution: King's College London (University of London)
Date of Award: 2016
Availability of Full Text:
Access from EThOS:
Access from Institution:
Plasmonic metamaterials have customized linear and nonlinear optical properties. This thesis investigates the properties of an anisotropic plasmonic metamaterial, consisting of aligned, interacting gold nanorods, to perform ultrafast light modulation, exploiting the intrinsic Kerr nonlinearity of gold. This e ect is based on an illumination-intensity-dependent change in the gold's permittivity, which takes place on ultrafast timescales and induces the intensity-dependent change of the metamaterial's re ection and transmission. A comprehensive theoretical and numerical analysis of the linear and nonlinear response of various con gurations of the metamaterial is performed and compared to experimental results. A new family of hyperbolic waveguided modes above the e ective plasma frequency, enabled by spatial dispersion, is identi ed. The strong nonlinear response and the dynamic modulation capabilities associated with the excitation of the waveguided modes is investigated. The presence of strong electron temperature gradients in the nanorods induced by a control light is shown to determine a stronger nonlinear modulation and to in uence the dynamic response, leading to subpicosecond time recovery components of the nonlinearity. Weak and strong coupling between molecular excitons and the metamaterial's modes can be achieved using core-shell nanorod geometries. The coherent interaction of molecular J-aggregates with coreshell nanorod arrays is analyzed in both the weak and strong coupling regimes. Subpicosecond components of the modulation are determined in the strong coupling conditions. The design of the optical response of the gold nanorod and core-shell metamaterials is studied through the near- to mid- Infrared, key spectral regions for molecular ngerprinting in chemical sensing and absorption spectroscopy. The applicability limits of the analytic approaches using the quasi-static and e ective medium approximations is tested. The results show great potential of the plasmonic nanorod metamaterial for ultrafast nonlinear optics in free-space and integrated applications, in a broad spectral range.
Supervisor: Zayats, Anatoly ; Wurtz, Gregory Alexandre Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID:  DOI: Not available