Use this URL to cite or link to this record in EThOS: http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.687629
Title: Bonding and debonding mechanism of pressure sensitive adhesives
Author: Akogyeram, Samuel
Awarding Body: Brunel University
Current Institution: Brunel University
Date of Award: 2010
Availability of Full Text:
Access from EThOS:
Access from Institution:
Abstract:
Pressure-sensitive adhesives (PSAs) are complex macromolecular-based blend formulations that, in dry form will adhere permanently to diverse surfaces with the application of mere finger pressure. This thesis addresses the bonding and debonding mechanisms of coated films of different commercially available PSAs by systemically investigating the film characteristics on multiple levels. The methods implemented involve a novel procedure in investigating viscoelastic properties with Dynamic Mechanical Analysis, film surface chemistry with Time-of-flight Secondary Ion Mass Spectrometry and film morphology, modulus and bonding characteristics with Atomic Force Microscope. The theoretical aspect invoked rubber elasticity, viscoelasticity and thermodynamic concepts in representation of film morphology with corresponding adhesion nature. The results indicate that the bonding and debonding behaviour of PSA films are of a viscoelastic nature, dictated mainly by two fundamental morphological elements. These elements are; (1) the formation of phase-separated self-assembly of polystyrene-richcopolymer nano-domains within the adhesive matrix and (2) the inter-linking of the nanodomains by elastically active elastomer segments into a physical crosslinked network system that is highly efficient in dissipating large strain energy. These morphological factors are manifested through a profound contribution to the peel strength of the adhesive films when either coated at high temperatures or annealed. Increasing the content of the polystyrene endblock-tackifier in the adhesive blend formulation increased the PSA’s performance sensitivity to the film coating temperature. Meanwhile increasing the cis-C=C bond concentration in the formulation reduced the film’s performance sensitivity to coating temperature, as polydienes are premised to promote the entropy-elasticity of the film matrix by contributing to the nano-domain interconnections. This thesis generates many qualitative similarities, despite the significantly different adhesive blends investigated and hopefully the results reported here are more universal than one might expect.
Supervisor: Song, W. Sponsor: EPSRC ; Henkel
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.687629  DOI: Not available
Keywords: Copolymer self-assemble ; AFM morphology study ; Nano-adhesion ; Visco-elasticity
Share: