Use this URL to cite or link to this record in EThOS:
Title: Understanding shell cracking during de-wax process in investment casting
Author: Lee, Kevin
Awarding Body: University of Birmingham
Current Institution: University of Birmingham
Date of Award: 2016
Availability of Full Text:
Access from EThOS:
Full text unavailable from EThOS. Thesis embargoed until 16 Jun 2021
Access from Institution:
In investment casting, the removal of wax from the shell is a critical step which may cause shell failure. It would be advantageous to predict the stress development during de-waxing process with computer simulation. The process was simulated with the consideration of two aspects: (i) The thermo-physical data required to model the shell and wax behaviour in the autoclave environment and (ii) A simulation capable of capturing the interaction between shell, wax and the autoclave environment. Data on mechanical properties, thermal properties, permeability, rheology, thermal expansion and density was gathered for wax and shell as appropriate. Flow-3D was used to simulate the de-wax process such that the shell and wax can be simultaneously modelled. It was shown that the Von misses stress exceeded the expected critical failure stress at certain nodes after steam was introduced to the system. Waxes with higher viscosity were predicted to reach the critical stress sooner. The simulation showed that for the selected drainage orifice sizes that was no or little difference in the time taken to reach the critical stress. Wax compressibility which was considered to represent shell permeability was predicted to have a large effect on shell cracking prediction. In general, the statistics of failure in validation test limited the conclusions that could be drawn. Waxes predicted to show differences in cracking and drainage with increasing orifice size did so in the experiment. The simulated drainage times were greater than determined experimentally by around 380s and this requires further investigation.
Supervisor: Not available Sponsor: Birmingham University ; Rolls Royce plc
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID:  DOI: Not available
Keywords: TP Chemical technology ; TS Manufactures