Use this URL to cite or link to this record in EThOS:
Title: Intelligent real-time train rescheduling management for railway system
Author: Dai, Linsha
ISNI:       0000 0004 5924 1909
Awarding Body: University of Birmingham
Current Institution: University of Birmingham
Date of Award: 2016
Availability of Full Text:
Access from EThOS:
Access from Institution:
The issue of managing a large and complex railway system with continuous traffic flows and mixed train services in a safe and punctual manner is very important, especially after disruptive events. In the first part of this thesis an analysis method is introduced which allows the visualisation and measurement of the propagation of delays in the railway network. The BRaVE simulator and the University of Birmingham Single Train Simulator (STS) are also introduced and a train running estimation using STS is described. A practical single junction rescheduling problem is then defined and it investigates how different levels of delays and numbers of constraints may affect the performance of algorithms for network-wide rescheduling in terms of quality of solution and computation time. In order to deal with operational dynamics, a methodology using performance-based supervisory control is proposed to provide rescheduling decisions over a wider area through the application of different rescheduling strategies in appropriate sequences. Finally, an architecture for a real-time train rescheduling framework, based on the distributed artificial intelligence system, is designed in order to handle railway traffic in a large-scale network intelligently. A case study based on part of the East Coast Main Line is followed up to demonstrate the effectiveness of adopting supervisory control to provide the rescheduling options in the dynamic situation.
Supervisor: Not available Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID:  DOI: Not available
Keywords: T Technology (General) ; TF Railroad engineering and operation