Use this URL to cite or link to this record in EThOS: http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.687160
Title: Mechanical inhibition of microtubule depolymerisation by kinesin
Author: Peet, Daniel R.
ISNI:       0000 0004 5922 4252
Awarding Body: University of Warwick
Current Institution: University of Warwick
Date of Award: 2015
Availability of Full Text:
Access through EThOS:
Full text unavailable from EThOS. Thesis embargoed until 24 Mar 2018
Access through Institution:
Abstract:
Kinesin-driven transport of molecular cargo along microtubules is central to the self-organisation of eukaryotic cells. We investigated the effect of kinesin-1 on microtubule stability using in vitro techniques. We found that kinesin-1, which was previously reported to have no influence on microtubule dynamics, to reduce shrinkage rates by approximately two orders of magnitude if maintained in a nucleotide-free or ATP-bound state. No effect was observed in the presence of high ADP concentrations, indicating that the microtubule-stabilising ability of kinesin-1 is constrained to a subset of the kinetic states of its ATPase cycle. By decorating just one side of the microtubule lattice with kinesin, we were able to gain additional insights into the mechanics of microtubules. By stabilising just 2-3 protofilaments with kinesin, the structural integrity of most of the microtubule could be maintained. Curiously, in such circumstances the microtubule would split at its ends. We further showed that microtubule curvature induced by hydrodynamic flow is trapped or even increased by nucleotide-free kinesin. We propose a mechanism whereby kinesin-1 drives the conformation of polymerised GDP-tubulin into a slightly elongated and shrinkage-resistant conformation. This is essentially the converse mechanism of that reported for the kinesin-13, MCAK, which supports tubulin in a curved conformation that is incompatible with the microtubule lattice.
Supervisor: Not available Sponsor: Biotechnology and Biological Sciences Research Council
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.687160  DOI: Not available
Keywords: QH301 Biology
Share: