Use this URL to cite or link to this record in EThOS: http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.687152
Title: Sample path large deviations for the Laplacian model with pinning interaction in (1+1)-dimension
Author: Kister, Alexander Karl
ISNI:       0000 0004 5922 341X
Awarding Body: University of Warwick
Current Institution: University of Warwick
Date of Award: 2015
Availability of Full Text:
Access from EThOS:
Access from Institution:
Abstract:
We consider the (1+1) dimensional Laplacian model with pinning interaction. This is a probabilistic model for a polymer or an interface that is attracted to the zero line. Without the pinning interaction, the Laplacian model is a Gaussian field (Φi)iEΛN, where ΛN = {1, 2, ..., N - 1}. The covariance matrix of this field is given by the inverse of Φ -> 1/2 ENi=0(ΔΦi)2, where Δ is the discrete Laplacian. Furthermore the values at {-1, 0, N, N+1} are fixed boundary values. The pinning interaction is introduced by giving the field a reward each time it touches the zero line. Depending on the reward the model with pinning and the one without pinning show different behaviour. Caravenna and Deuschel [10] study the localisation behaviour of the polymer. The model is delocalised if the number of times a typical field touches the zero line is of order o(N). The authors of [10] show that for zero boundary conditions there is a critical reward such that for smaller rewards the model is delocalised whilst for larger rewards the model is localised. In this thesis we study the behaviour of the empirical profile of the field. We show that for non zero boundary conditions there is a critical reward such that for smaller rewards the empirical profile for the model with pinning and the one for the model without pinning behave in the same way whilst for larger rewards the empirical profile of the model with pinning interaction is attracted to the zero line.
Supervisor: Not available Sponsor: Engineering and Physical Sciences Research Council
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.687152  DOI: Not available
Keywords: QA Mathematics
Share: