Use this URL to cite or link to this record in EThOS:
Title: Marine landscape mapping in submarine canyons
Author: Ismail, Khaira
ISNI:       0000 0004 5921 5081
Awarding Body: University of Southampton
Current Institution: University of Southampton
Date of Award: 2016
Availability of Full Text:
Access from EThOS:
Full text unavailable from EThOS. Please try the link below.
Access from Institution:
As the largest portion of the Earth's surface, the deep-sea contains various ecosystems and harbours among the highest biodiversity on the planet. Complex deep-sea environments such as submarine canyons are some of the true ecosystem hotspots harbouring extensive species diversity owing to their high terrain variability. However, their complexity and limited accessibility has left many unanswered questions concerning their spatial structure and ecology. Recently, there has been an increasing amount of interest to understand the ecosystem function of this challenging environment, which has led to the development of technology to enable accessibility for research and exploration. Along with this, evidence of anthropogenic impacts has been uncovered, and this calls for more effective management in this complex type of deep-sea environment. Although there is a growing awareness for conservation in the deep-sea, scientific knowledge to underpin these strategies is still inadequate. Often what is known to the scientific community is not properly conveyed to policy makers. Hence, implementation of marine spatial management is not always successful. This thesis provides a scientific framework to underpin ecosystem-based management. It examines the seabed spatial structure in submarine canyons by 1) developing a mapping procedure to represent the spatial structure using commonly available data types for seabed studies, 2) proposing an approach to quantify the structural variability as an indicator for biodiversity to aid decision-making in prioritising conservation areas and 3) evaluating the spatial structure information transfer across different spatial scales and data types. As a result, a novel technique that is objective, automated and statistically robust is developed to map marine landscapes, which are geomorphologically and ecologically meaningful. The marine landscape map is found to be the best representation of environmental characteristics in submarine canyons. Based on this finding, marine landscape configuration and composition is quantified as a proxy for habitat heterogeneity and potentially an indicator of biodiversity. Additionally, the method is transferred to a high-resolution dataset for marine landscape mapping at a local scale, in order to evaluate the evolution of spatial characteristics across data scales. This study reveals that a link between regional and local scale spatial structure can be identified and mapped, and that information from one scale can be transferred to the other. Additionally, regional scale marine landscape maps provide first-level structural information that is suitable and sufficient to facilitate marine spatial management for large heterogeneous areas such as submarine canyons.
Supervisor: Huvenne, Veerle Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID:  DOI: Not available