Use this URL to cite or link to this record in EThOS: http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.687015
Title: Indian Ocean Dipole impacts on northwestern Indian Ocean climate variability
Author: Elfadli, Kasem
ISNI:       0000 0004 5921 4935
Awarding Body: University of Southampton
Current Institution: University of Southampton
Date of Award: 2015
Availability of Full Text:
Access from EThOS:
Full text unavailable from EThOS. Please try the link below.
Access from Institution:
Abstract:
The Indian Ocean Dipole (IOD) is a coupled ocean-atmosphere phenomenon in the equatorial Indian Ocean, with a positive mode characterized by anomalous warming of sea surface temperatures in the west and anomalous cooling in the east. The IOD has been shown to affect inter-annual variability of the Indian monsoon. There is also evidence that the IOD may affect the formation, strength and duration of monsoon-related oceanic features in the North West Indian Ocean (NWIO), including fronts and eddies, the Somali upwelling and the ‘Great Whirl’ system. However, the mechanism by which the IOD develops and details of its connection with monsoon-related oceanic phenomena in the NWIO remain unclear. Satellite datasets of sea surface temperature anomalies (SSTA) and sea surface height anomalies (SSHA) over the past two decades have been examined, mainly to investigate the relationship between the IOD and large-scale climate modes like the Indian monsoon, El Niño Southern Oscillation (ENSO) and Rossby/Kelvin Waves. Early results show SSHA in NWIO; is more correlated with the IOD than with the ENSO. Also the results indicate an impact of Rossby wave patterns on the Somali Current system. Satellite datasets of sea surface temperature anomalies (SSTA) and sea surface height anomalies (SSHA) over the past two decades have been examined, mainly to investigate the relationship between the IOD and large-scale climate modes like the Indian monsoon, El Niño Southern Oscillation (ENSO) and Rossby/Kelvin Waves. Early results show SSHA in NWIO; is more correlated with the IOD than with the ENSO. Also the results indicate an impact of Rossby wave patterns on the Somali Current system. Satellite datasets of sea surface temperature anomalies (SSTA) and sea surface height anomalies (SSHA) over the past two decades have been examined, mainly to investigate the relationship between the IOD and large-scale climate modes like the Indian monsoon, El Niño Southern Oscillation (ENSO) and Rossby/Kelvin Waves. Early results show SSHA in NWIO; is more correlated with the IOD than with the ENSO. Also the results indicate an impact of Rossby wave patterns on the Somali Current system.
Supervisor: Guymer, Trevor Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.687015  DOI: Not available
Share: