Use this URL to cite or link to this record in EThOS: http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.686710
Title: The use of phosphorous containing polymers to mimic the action of bisphosphonate drugs in bone repair
Author: Bassi, Anita Kaur
Awarding Body: University of Manchester
Current Institution: University of Manchester
Date of Award: 2011
Availability of Full Text:
Access through EThOS:
Access through Institution:
Abstract:
Bone has the capacity to regenerate itself, however for challenging defects such as non-uniform factures, repair can be problematic. A similar challenge is presented in the repair of osteoporotic bone. Osteoporotic bone becomes increasingly porous and brittle and the risk of fracture is greatly increased. A drug mimic, poly(vinyl phosphonic acid – co – acrylic acid)(PVPA), has been incorporated into FDA approved poly(ε-caprolactone)(PCL), and aims to mimic the action of bisphosphonates to reduce the activity of osteoclasts. The PVPA polymer contains pendant phosphonic acid groups which are hypothesised to mimic the P-C-P backbone found in bisphosphonates. The PCL/PVPA scaffold has been found to have sufficient mechanical strength in order to be used as a bone void filler as well as providing a hydrophilic surface for superior cell attachment. The substrate has been found to significantly enhance the deposition of collagen, alkaline phosphatase activity and the expression of osteocalcin. Alizarin red staining revealed an increase in the rate of mineralisation in the presence of the drug mimic. The PCL/PVPA substrates have been suggested to induce osteoblast cells from a proliferative phase to a mineralisation stage. This is believed to be due to the presence of phosphorous within the scaffold which could lead to the critical concentration required for the initiation of mineralisation being reached more rapidly and effectively. The PVPA polymer has been found to mimic the action of bisphosphonates by inducing osteoclast apoptosis in vitro, and its actions of osteoclast apoptosis are comparable to that of Alendronate, a commonly administered bisphosphonate. A critical size defect model has demonstrated that the PVPA polymer has the ability to heal critical size defects; the healing potential was two fold greater than the control PCL substrate. Initial in vivo studies using a subcutaneous model demonstrated an improvement in mineralisation in the presence of PVPA. Untreated PCL/PVPA substrates displayed a high level of branched blood vessel formation, essential for healthy bone formation. However PVPA samples pre-treated with VEGF, hindered blood vessel formation and the infiltration of cells. This suggests that the PVPA alone is capable of inducing neovascularisation without the addition of VEGF. The findings suggest that the PCL/PVPA system could be used to treat challenging bone defects such as non-unions and osteoporotic fractures.
Supervisor: Gough, Julie ; Downes, Sandra Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.686710  DOI: Not available
Keywords: Bone Tissue Engineering ; 3D Scaffolds ; Biodegradable ; Polymer ; Osteoporosis
Share: